

Dr. Patrik Langehanenberg, March 30th, 2023

A member of the JENOPTIK Group

Our product groups

Testing of optical components MPO Assembly and testing of lens systems MPO Testing of image quality Image Quality Assembly and testing of camera modules Automation Customer device development Engineering

Non-contact measurement of center thickness

- Short coherent interferometric technique that measures the optical path length between optical surfaces
- Lens thickness of glasses can be calculated using the refractive index

$$OPL = d \cdot n_g$$

with **group** refractive index n_a

$$n_g(\lambda) = n(\lambda) - \lambda \frac{\mathrm{d}n(\lambda)}{\mathrm{d}\lambda}$$

 Knowledge about material properties essential for this technique

TRIOPTICS

Non-contact CT measurement of unknown glasses

- 1. Measurement of the distance between the glass plates $d_{\rm cell}$
- 2. Measurement of distances:
 - a. Top glass plate to top lens surface d_{Air1}
 - b. Bottom lens surface to bottom glass plate d_{Air2}
 - c. Lens surface 1 to lens surface 2 "OPL"
- Calculation of the lens thickness without material information:

 $d_{\text{geom}} = d_{\text{cell}} - d_{\text{Air1}} - d_{\text{Air2}}$

- > The group refractive index: $n_{\text{group}} = \frac{OPL}{d_{\text{geom}}}$
- > Inverse search of n_{group} to narrow down the material

NEW: LensGage

The LensGage is used for:

- Determination of the lens thickness without knowledge of the material
- Determination of the group refractive index
 - Usage for later OptiSurf[®] measurements when the objective lens is mounted
 - Quality inspection to secure a consistent group refractive index throughout batches
- Determination of glass material

> Accessory for OptiSurf[®] and OptiSurf[®] LTM

Set up

Non-contact CT measurement of unknown glasses

Material	Thickness [mm]	Group refractive index		Deviation
		Nominal	Measured	Deviation
S-LAH58	7.9265	1.878438	1.878415	0.00002
F_silica	5.0430	1.461648	1.461705	0.00006
N-KZFS2	10.9143	1.561912	1.562031	0.00012
S-FPL51	5.6865	1.497283	1.497406	0.00012
S-NBH51	1.0681	1.745795	1.746083	0.00029
S-LAH58	3.8951	1.878418	1.878833	0.00041

Technical data: OptiSurf[®] LensGage

	OptiSurf [®] "LensGage" Module
Max. Sample diameter	200 mm
Accuracy	n _g : ~10 ⁻⁴ for d _{geom} > 6 mm d _{geom} : 1.5 μm
Measurement wavelength	1310 nm; spectral band width of 85 nm
Thickness range for LensGage module	Up to 55 mm optical thickness (larger on request)

This new approach is a very powerful tool to precisely test the center thickness of (unknown) lenses, to monitor refractive properties, and to identify the glass material of lenses

Dr. Patrik Langehanenberg, March 30th, 2023

A member of the JENOPTIK Group