High-Precision Processing of Glass for Various Applications

Ernestas Nacius WOP | Workshop of Photonics., Lithuania

Laser processing solution provider

Exceptional expertise in glass processing

3 M holes in 45 minutes

₩° O P

Solution development | R&D

Contract manufacturing

Hardware | laser systems

FEMITO GLASS

WOP glass technologies

All glass types | All glass producers

When choose our glass technologies?

In need for smallest feature size possible

In need for precision & quality

- Biotechnology & Medical
- Semiconductors
- Laser manufacturers
- Automotive
- Aerospace & Defense
- Universities and R&D
- Any others who need micro solution

Perfect glass cuts

D236T glass, thickness 300 μ m

Glass & sapphire cutting

Quality of cut

- Cut width less than 1 µm
- Low chipping <20 µm
- No post-processing required

D236T glass, thickness 300 µm

50 µm

Sapphire, thickness 400 µm

Type of glass

• Tempered • Non tempered • Sapphire

Sapphire, thickness 700 µm

Sapphire, thickness 700 µm

Glass cutting

Features

Patented glass & sapphire dicing technology

From ultra-thin glass to 10 mm

High process speed up to 800 mm/s

All shapes: circular, square, irregular

6

Inner and outer contours

Tunable dicing process for different substrate thickness

FemtoGLASS outperforms other glass dicing methods

	Blade	Stealth laser	Laser ablation	WOP F
Glass thickness	2 – 19 mm	200 µm – 10 mm	30 µm – 2 mm	30 μ in a s
Glass type	All types	Non-tempered Sapphire	All types	Te Non- So
Cutting speed	up to 100 mm/s	Up to 300 mm/s	Up to 10 mm/s	Up to
Possible shapes	Straight cuts only	T-shapes and circular shapes are possible	Any shape	Any sh
Surface chipping	< 200 µm	< 50 μm	< 50 μm	<
Street requirement	> 50 μm	< 15 µm	> 50 μm	
Water (cooling/cleaning)	yes	no	yes	
Debris	yes	no	yes	
Thermal effect on the device	yes	no	yes	

-₩ O P

wophotonics.com

Where to apply?

—~ O P—

- Wafer level glass product dicing
- Augmented reality, smart glasses screens
- Mobile phone screens, camera lenses
- Micro optics elements
- Thin glass
- Electronic components
- Display technologies

All kind of holes in glass

25 μm

Glass drilling

Hole diameter from 20 μm

Hole size tolerance $\pm 1 \,\mu m$

Aspect ratio To 1:100

Smooth sidewalls Ra <1μm

Holes drilled per 1 minute 65 000 +

SEM images of vertical wall hole array

Obsidian (SiO2) micro drilling without taper

3 million holes in 8" diameter, 500 μm thickness fused silica wafer

Sapphire drilling top view

50 μm

More drilling

99% identical diameter holes

Ra <0.08 µm: super smooth sidewalls

Hole shape: hourglass

wophotonics.com

Tapered holes

SEM images of tapered holes

Entry 5x

SEM images of tapered holes

Exit 5x

Entry 5x

Side view, 20x

Side view, 10x

SLE | Selective laser etching

SLE technology ensures zero micro-cracks or chipping

Various shapes: circular, square, irregular

Thin glass: from 30 μm to 3 mm

Fiber alignment arrays, with SLE

Selective laser etching for 3D glass structures

Glass rod for fiber optic collimators, ferrules, alignment fixture

Laser welding

- High precision
- Good mechanical strength
- No extra bonding material is needed
- Hermetic sealing
- Minimum heat-affected zones

Microfluidic channels sealing

Microfluidic chip, 5 hermetic layers bonded without adhesive, side view

Glass to metal micro welding

Glass to metal micro welding

Where to apply?

Glass spacers | Interposers

Glass carrier wafers > 8" diameter, 500 μ m thickness fused silica wafer

Through glass via (TGV) wafers

Packaging glass products

Microfluidic chips & devices

Switch ceramics to glass for probe cards to reach 80% less defects and 20x faster processing

Precision in microfluidics

Straight or irregular cuts

- Feature sizes from 10 μm
- Substrate thickness from 100 µm to 10 mm
- Low chipping <10 µm, typ. none

Surface roughness Ra <1 µm or less after polishing

Wide range of channel width and depth

with aspect ratio up to 1:100

Microfluidics channels drilling with SLE

Microfluidics chips channel drilling

-₩′ O P

Microfluidics channels formation in glass

Microfluidics channels formation in glass

Microfluidics: Custom solutions

wophotonics.com

Overview

GLASS SPACERS

MICRO DRILLED GLASS

GLASS GUIDE PLATES FOR PROBE CARDS

PACKAGING GLASS PRODUCTS

GLASS CARRIER WAFERS

GLASS

MICROFLUIDIC CHIPS

COTING	CU	TT	ING
--------	----	----	-----

			
10.1222-2			
000	000	000	000
000	000	000	000
000	000	000	000
000	000	000	000
000	000	000	000
000	000	000	0.0.0
000	000	000	000
000	000	000	000
000	000	000	000
000	000	000	
000	0.0.0	000	0.0.0
000		000	000
	000	000	
000	000	000	
000	6 6 6	000	000
000		000	

MICROWELL PLATES

Thank you & let's talk!

Ernestas Nacius ernestas.nacius@wophotonics.com

Workshop of Photonics | Altechna R&D, UAB Mokslininku St. 6A, Vilnius LT-08412 Lithuania

www.wophotonics.com

We'll deliver a solution for your µ task!

