

EPIC Technology Meeting on Photonics in Defense 6 September 2023, Starachowice, Poland

David Dupuy, Regional Sales Manager

$1 \,\mu m$ and $2 \,\mu m$, **Doped Fibers, LiNbO₃ Phase Modulators, and Variable Optical Delay Lines** dedicated to Directed Energy Laser

- **1**. What is the Photonics activity within exail?
- 2. LiNbO₃ Modulators based solutions for Coherent Beams Combining fiber lasers
- **3.** $LiNbO_3$ Modulators for Spectral broadening
- **4** New 2 μm doped fibers

Stronger together

1500

EMPLOYEES

250+

MILLIONS EUROS OF TURNOVER

20+ % of turnover INVESTED IN R&D **80%** OF TURNOVER IN EXPORT

A unique technological know-how

Saint-Germain-en-Laye Inertial navigation
Couëron
Saint-Brevin-les-Pins — Industrial equipment Automation
Lannion Specialty fibers Simulation Inertial navigation
Brest Subsea navigation and acoustic positioning Robotics and Al
Pessac Micro-optics assembly
TalenceQuantum sensingCold atoms joint laboratory
Toulouse On-board electronics Manufacturing & testing solutions for aeronautics
Montpellier Remotely Operated Vehicles Camera systems

Ostende Drones systems assembly and MCO

Mouscron Robotics R&D hub

Paris Micro-optics assembly

Bonneuil-sur-Marne Motion simulation

Saclay Aerial drones Unmanned Ground Vehicles

Besançon Modulators

Saint-Etienne Hardened optical fiber joint laboratory

La Ciotat Autonomous vehicles Subsea imagery Remote hydrography services

Six Fours les Plages Robotics and Al

La Garde Drones systems and software Autonomous vehicles

Photonics fibered solutions, from components to instruments

> Scalable technologies to address a full range of applications

LiNbO₃ Phase, Amplitude, IQ Modulators (COTS, Space model)

µoptics and passive optics integration

Transmitters, transceivers, laser pilot, coherent regeneration station

Absolute Quantum Gravimeter

Turn-key devices and systems

Components

Instruments

Inertial Measurement Unit

Lasers (Narrow-linewidth, high-power) **Optical Low Noise & Power amplifiers**

Quantum lasers

L Π 11 U FOR EXAIL OFFERS AN OPTIMIZED SOLUTION FOR THE ACCURATE, ADJUSTABLE, AND RELIABLE PHASELOCK MODULATION BETWEEN SEVERAL LASER BEAMS, USING THE COHERENT BEAM COMBINING

TECHNIQUE: THE MODBOX CBC.

Coherent combination of laser beams

The phase modulators array equalize the optical path for each beam A maximum of energy / power is achieved by constructive interference One phase modulator is required per beam

A low frequency modulation is necessary

Pure Phase modulation required (w/o Residual Amplitude modulation)

> Key LiNbO₃ Phase modulators specification:

> Low Insertion Loss & high Optical Power Handling Capability

> DC to 200 MHz

> Optical Delay Line may be required to equalize optical path

> Key ODL specification:

> Very precise and stable control of an optical delay

> Motorized delay control

Coherent combination of laser beams

> Incomparable optical waveguide and the key optical performances reached:

- \circ Annealed Proton Exchange process on a selected LiNbO₃ doped wafer.
- Very low insertion loss: IL < 3 dB. Gaussian distribution with a 2 dB typical mean.
- High optical power handling capability of up to 300 mW.
- High resistance to refractive index effect and Pyro-electric effect.
- \Rightarrow Exail offers the best LiNbO₃ phase modulators optical performances.
- \Rightarrow High optical performances stable over the temperature range and over the time

> Very low $V\pi$:

- \circ Modulator V π is proportional to the Electro-Optical bandwidth
- \circ The NIR-MPX-LN-0.1 features a V π of only 1,5 V @ 50 MHz
- \Rightarrow Low V π at low frequencies minimizes RF to minimize the power consumption

> Mitigate the RAM effect:

- The NIR-MPX-LN-0.1 is a DC coupled device: a permanent DC signal can be applied w/o modulator damages
- Applying a constant DC voltage allows to reduce the RAM from typically 30dB to near 40dB (patented technique)
- ⇒ Residual amplitude modulation can be strongly reduced thanks to a permanent DC voltage

lator damages atented technique)

Coherent combination of laser beams: ModBox-CBC-8CHannels

Imperature controllers	Number of channels	4or 8	
	Operating wavlength	1064 nm	2000 nm
hase modulators ptical fiber storage F driver	Insertion loss	< 5 dB	< 5 dB
	Adjustable delay range	600 ps	600 ps
	RAM	Adjustable	Adjustable

SPECTRAL BROADENING For DIRECTED ENERGY

Spectral broadening using large bandwidth phase modulator

A phase modulator is required per Fiber Module to suppress the SBS
One phase modulator is required per beam
High frequency modulation (several GHz, to 10 GHz, and 20 GHz)

> Key LiNbO₃ Phase modulators specification:

- > Several GHz to 10 GHz EO-bandwidth
- > High RF power handling capability
- > High optical power handling capability
- > Low $V\pi$

Spectral broadening using large bandwidth phase modulator

Incomparable optical waveguide and the key optical performances reached: >

- Annealed Proton Exchange process on a selected LiNbO₃ doped wafer.
- High optical power handling capability of up to 300 mW. Ο
- Optical power stability < +/- 0.5 dBm over [-30; +75] °C. 0
- Optical power stability < +/- 0.15 dBm over [0; +70] °C
- Exail offers the best LiNbO₃ phase modulators optical performances. \Rightarrow
- High optical performances stable over the temperature range and over the time \Rightarrow
- Very low V π and very large bandwidth modulators choices: >
 - Modulator V π is proportional to the Electro-Optical bandwidth
 - The NIR-MPX-LN-02 features 0
 - Vπ of only 1,5 V @ 50 MHz / 2,5 V @ 3 GHz Ο
 - Bandwidth up to 5 GHz 0
 - The NIR-MPZ-LN-10 features 0
 - \circ V π of 2,3 V @ 1 GHz / 3 V @ 10 GHz
 - Bandwidth up to 20 GHz 0
 - The NIR-MPZ-LN-20 features Ο
 - Vπ of 3,5 V @ 1 GHz / 4,5 V @ 10 GHz / 6 V @ 20 GHz 0
 - Bandwidth up to 30 GHz 0

 \Rightarrow Low V π with very large bandwidth frequencies modulators minimizes RF to minimize the power consumption

VpiRF vs frequency

INSTITUTE OF SAINT-LOUIS (ISL) HAS BEEN A PARTNER OF EXAIL IN THE RISING FIELD OF 2 µm FIBER LASERS. EXAIL SUPPORTS THE EMERGENCE OF INNOVATIONS IN THIS FIELD WITH ITS EXTENSIVE EXPERIENCE AND PORTFOLIO.

Fiber lasers in the 2 µm range: doped fiber for seeder and amplifier

2 μm doped fibers Highlights

Single Clad 4 and 5 µm core, PM and non-PM Double Clad 6 to 25 µm core, PM and non-PM	Diode 793 mm FBG HR @ 2.09 µm PC1
Double Clad 6 to 25 µm core, PM and non-PM Triple Clad 18µm co	Diode 793 nm
Single Clad 8µm core, PM and non- PM Single Clad 20 µm core, PM Triple Clad 20 µm core	
	Single Clad 4 and 5 µm core, PM and non-PM Double Clad 6 to 25 µm core, PM and non-PM Double Clad 6 to 25 µm core, PM and non-PM Triple Clad 18µm co Single Clad 8µm core, PM and non- PM Single Clad 20 µm core, PM Triple Clad 20 µm core

exci Thank you for your attention

david.dupuy@exail.com