

FluidInspectIR Mid-Infrared Analyser Platform

Spectrolytic 2023

Introduction to Spectrolytic

Spectrolytic GmbH – Wackersdorf Germany

- Product / Hardware Development
- Manufacturing

Spectrolytic Ltd - Edinburgh, Scotland

- Sales & Marketing
- Product / Hardware Development
- Customer Support & Application development
- Software development
- Consulting

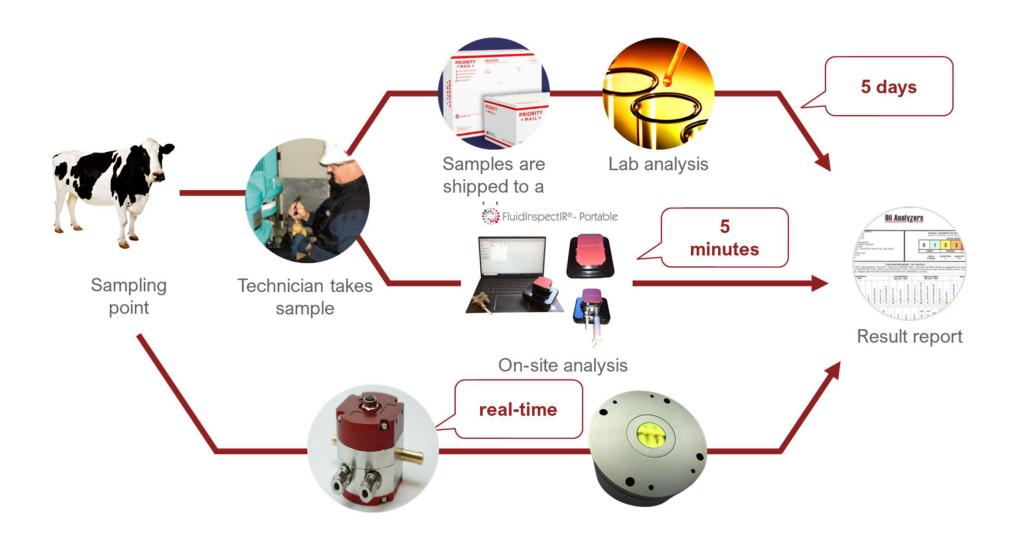
History

- Fully operational since 2016
- Organically grown with no external investors

FluidInspectIR® validated together with Exxon Mobil for oil analysis

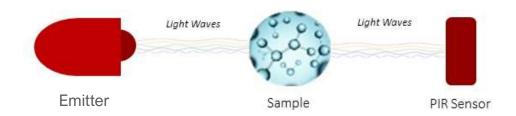
Mobil Lubricants Europe
5,866 followers
3mo • ⑤

Meet **Rüdiger Kempf**, one of Mobil's most experienced Field Lubrication Engineers. In many ways, he's like a roving CSI, except the 'crime scenes' he investigates are customers' operational emergencies – from worrying wear to costly breakdowns.


Rüdiger typically spends 3 days a week in the field, conducting forensic lubrication analysis in industries as diverse as steel and paper. His tools? A laptop, mobile and oil sampling equipment – giving him critical evidence on machines' inner workings without taking them apart.

"My job is fascinating! Each day is different and when I come across a really challenging problem, I can call upon specialist colleagues from our Mobil Serv Lubricant Analysis unit or Equipment Builder department to help me dig into the causes and solutions. Customers really appreciate solutions that have been tailored to their operation."

#ProgressWithMobil #fieldengineer #lubrication #oilanalysis



Spectrolytic Solution - From 5 days to real-time

FluidInspectIR® - How does it work & Why Mid IR

Lab based analysis uses FTIR spectroscopy to determine many sample parameters

A broad band emitter emits light through a sample.

The molecules in the sample absorb certain wavelengths of the light while others pass through the sample.

The wavelength that is absorbed by the sample can be linked to certain molecular structures / paramters and the concentration can be quantified

Monitoring changes in the absorption spectrum over time provides information about concentration changes of relevant molecules and quality of the sample

Mid-infrared light from 2um-12um is called the fingerprint region as light absorption can be used to identify molecules

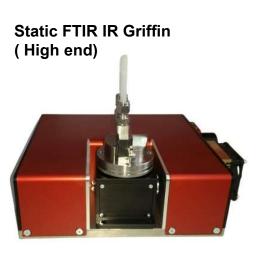
Mid-infrared light absorption happens at the fundamental transition, so the math becomes easy as no harmonics

About a factor 100 less samples needed to generate an accurate calibration file

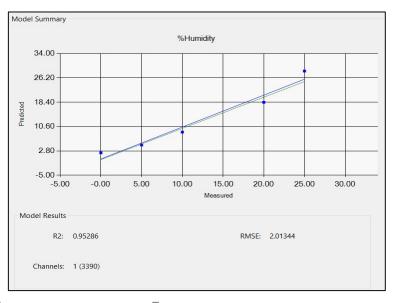
Product Portfolio

All products have no moving parts, are robust and designed for inline/field use

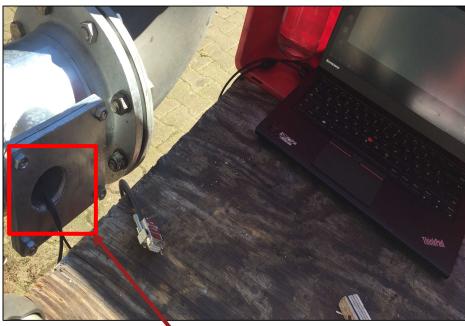
Products are based on a common platform and can be easily customised depending on application


MIRS-T and MIRS-A

FluidinspectIR Portable

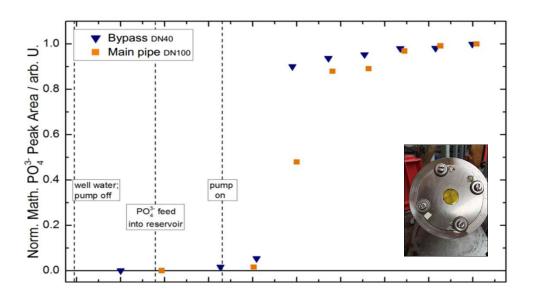


Example Applications: Humidity in soil


- Initial tests to measure humidity in soil
- Measurements were done using Spectrolytic ATR sensor
- Soil humidity is an important factor during the seeding process
- First results below look promising and a very good correlation to reference analysis
- Next step is miniaturization of the sensor and full integration

Example Applications: Inline Manure analysis

MIRS sensor mounted in pipe



Comms cable to laptop

Example Applications: Inline Manure Analysis

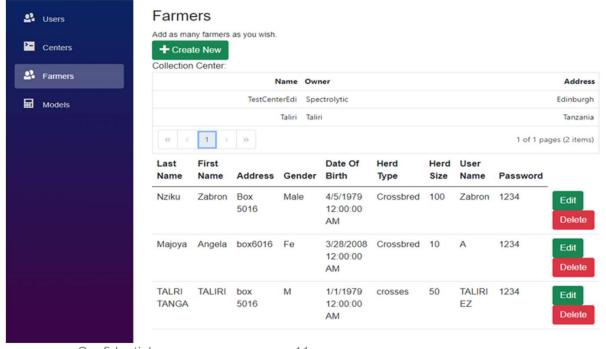
Comparison with N.P.K solutions

Spectrometer	Parameter	Phosphate PO ₄	Ammonium NH ₄ ⁺	Nitrate NO ₃ -	Urea CH₄N₂O	
Handheld	Factor	4	4	4	4	
Spectrolytic	R ² of CV	0.997	0.999	0.998	0.968	
spectrolytic	RMSE CV / %	4.1	2.6	3.0	10.1	
ATR FTIR	Factor	4	4	4	4	
BRUKER	R ² of CV	0.999	0.999	0.998	0.997	
	RMSE CV / %	2.5	1.85	3.7	4.0	

- Targeted to measure Total Nitrogen, Ammoniac, Phosphate and Total Solids
- Designed for inline measurements to monitor manure spreading to ensure that legal limits are not exceeded
- Can be integrated into manure pump or manure tank
- Very good accuracy achieved on test solutions

Example Applications: Inline Manure Analysis

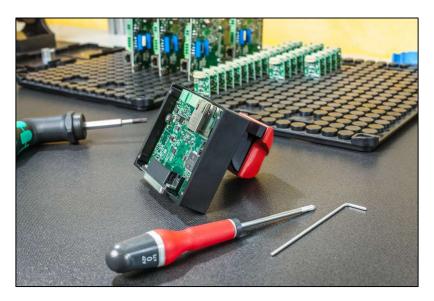
- Data below show real time data of inline manure set-up as shown in previous slide (pig manure)
- Optimizing measurement process and algorithms resulted in a factor 4 improvement
- Still significant scope to further improve the system by optimizing additional parameters
- MIR manure sensors will be significantly more economical in maintaining calibration files as each
 year a new calibration has to be developed.


	All measurements								Stable Temp Only					
	Ref Ch	annel												
Date	Signal	%T	Temp		Total Nitrogen	TS%	Ammoniacal	Date	Temp		Total Nitrogen	TS%	Ammoniacal	
11:30:4	383.00	71.60	19.06		4.708876	5.714236	0.972861	11:30:46						
11:37:4	374.00	70.05	26.5		6.743984	7.30223	1.726021	11:37:45						
11:43:2	1		29.81		7.608752	7.977009	2.011348	11:43:21	29.81		7.608752	7.977009	2.011348	
11:48:4	7		30.69		7.828747	8.148672	2.104293	11:48:47	30.69		7.828747	8.148672	2.104293	
11:54:2	5		30.25		7.766816	8.100347	2.120802	11:54:25	30.25		7.766816	8.100347	2.120802	
12:00:5	9		28.13		7.216206	7.670705	1.988906	12:00:59	28.13		7.216206	7.670705	1.988906	
12:06:2	0		31.13		7.809808	8.133893	2.175036	12:06:20	31.13		7.809808	8.133893	2.175036	
12:11:5	3		30.69		7.764447	8.098498	2.163346	12:11:53	30.69		7.764447	8.098498	2.163346	
12:17:1	7		31.25		7.903855	8.207278	2.214072	12:17:17	31.25		7.903855	8.207278	2.214072	
12:23:2	3		29		7.311225	7.744849	2.064779	12:23:28	29		7.311225	7.744849	2.064779	
12:30:0	373.00	69.91	28.19		7.013111	7.512231	1.95898	12:30:01	28.19		7.013111	7.512231	1.95898	
12:36:0	\$		29.13		7.253737	7.699991	2.047626	12:36:04	29.13		7.253737	7.699991	2.047626	
12:41:2	9		31.25		7.664374	8.020411	2.154496	12:41:29	31.25		7.664374	8.020411	2.154496	
12:46:5	372.00	69.56	31.63		7.773384	8.105472	2.213658	12:46:50	31.63		7.773384	8.105472	2.213658	
12:52:3	5		30.25		7.43011	7.837615	2.111696	12:52:36	30.25		7.43011	7.837615	2.111696	
12:59:4	9		27.13		6.637236	7.218935	1.833349	12:59:49						
13:05:3	1		30.06		7.300038	7.73612	2.081622	13:05:31						
13:14:0	377.00	70.40	25.69		6.048588	6.759613	1.621677	13:14:02						
13:19:2	3		30.94		7.336764	7.764777	2.099845	13:19:28						
14:55:2	379.00	70.89	22.75		5.167991	6.072483	1.264949	14:55:29						
15:03:5	5		24.88		5.9564	6.687679	1.579469	15:03:55						
15:29:15	379.00	70.99	22.63		5.122557	6.037031	1.203133	15:29:15						
		Max Te	31.63	Mean	6.971227545	7.479548864	1.895998364	Max Temp	31.63	Mean	7.564967077	7.942843923	2.102233692	
	1	vii re	19.00	Story	0.907129929	0.754891804	0.95928699	 min remp	28.13	Sider	0.205612209	0.220043555	0.003255524	
		Range	12.57	%Non-Unif	13.87316536	10.08953371	18.73877936	Range	3.5	%Non-Unif	3.788677544	2.815660952	3.959384936	
	1				7.903366		3.344073			Ada Ada		3.207273		
	-			Min %	4.708876					Min %	7.013111	7.512231	1.95898	
				Range	3.194979	2.493042	1.241211			Range	0.890744	0.695047	0.255092	

Example Applications: Digitizing Milk analysis in Tanzania

- Milk composition (Fat, Protein, Lactose) and adulterants
- Cloud based data analysis system providing feedback and learning for all stake holders
- Easy to use and reliable
- Both Mains and battery powered options

Example Applications: Milk Supply Chain Management


- Measure milk composition inline directly when pick-up at farmer
- Integration of milk analysis system directly into truck
- Milk composition is directly shared with all stake holders (farmers, dairies, etc) increasing efficiencies
 - Milk can be directly processed by dairies, no waiting, no cooling costs etc
- Extremely stable & robust platform technology enables that (Sensor has been qualified for military application)

Manufacturing

- All products are manufactured by Spectrolytic in Germany
- Production is carried out in an ISO 9001 qualified manufacturing environment
- In-House production of key components allows fast response time
- In-house competencies are
 - Manufacture of non-standard cabling and connectors
 - Configuration of Control boxes
 - Customized metal works
 - Electronic & Mechanical design using state of the art tools
- Automated stock control

