

Wafer Bonding: Enabling microLED Display Revolution

EVG Enables Full Process of µLED Displays Fabrication

Confidential

Executive Summary

Micro-Displays

EVG is an indisputable market leader in **wafer bonding**, a **key technology** for **µLED displays** manufacturing.

Our solutions go beyond bonding and enable many µLED display solutions for the industry leaders.

Process Development In-house Pilot Manufacturing R&D and HVM Equipment

Our Bonding Expertise

- Hybrid
- Fusion
- Plasma activated
- Adhesive
- Metal diffusionWafer to wafer
 - sion Temporary
 - De-bonding

Die to wafer

Other Technologies

- Waveguides nanoimprint
- Wafer-level micro-optics
- Mass transfer

µLED

- Display Technologies
- Analysis of Micro-display Manufacturing
- Technology Demonstrators
- Unique Technologies

Lextar Mini & Micro LED Chip Micro LED Sx9 mil² Sx9 mil² Mini LED Nov09 um² Soud0 um² Sx5 mil² Sx5 m

µLED dimensions are <100µm.

Unlike the larger counterparts, **µLEDs** must be de-attached from the substrate due to their size.

Due to the projection optics losses and the AR image scaling the brightness of µLED micro-displays should significantly exceed the upper limit of the eye sensitivity.

Display Technologies

111

www.EVGroup.com

The backplane and μ LED array designs, manufacturing and assembly methods significantly vary depending on the display type.

Two major parts of the µLED displays:

- µLED array light emitter
- Backplane control and input interface

Complex micro-display architecture and intrinsic difference of the EPI and backplane wafers materials and processing sets a need for advanced heterogeneous integration solutions.

Direct-view displays

µLED display market consists of two major clusters:

- Direct-view displays
- Micro-displays

EV Group Proprietary and Classified

Micro-displays have very small pixel size of $\approx 10 \mu m$ and less. They can maintain high resolution and have compact size.

This makes **micro-displays** a perfect solution for **VR**, **AR**, **HUD** and **mini-projector** applications.

Due to the significant difference in the display sizes these two segments have different major bottlenecks:

Direct-view displays are heavily dependent on the µLED mass transfer processes.

Micro display manufacturing requires to find a way to achieve extreme pixel pitch.

The integration of the µLEDs and the backplane requires advanced bonding solutions.

Analysis of Micro-display Manufacturing

µLED Displays | Manufacturing Process

Production Flows Overview

The next slides exhibit a representative but not a full list of EVG technologies for µLED displays manufacturing. The process flows vary significantly company to company.

µLED | Pixel

EVG Technology	Application	Equipment
Optical lithography	Patterning of the EPI wafer to singulate the μ LEDs	6XX IQ aligner
Spin & Spray coating	Adhesive coating	1XX
Adhesive bonding	EPI transfer + LED transfer	5XX 850 Gemini
Laser Lift Off	EPI substrate removal	850DB

µLED pixel process is the least complicated.

Nonetheless, advanced solutions with multiple selective-etched dielectric layers are common.

µLED | Smart Pixel

Next step: mass transfer

EVG Technology	Application	Equipment
Ultra Thin Layer Transfer	Substrate MOS Driver substrate	BondScale
NanoCleave	Alternative to Thinning and wet oxide etching	850DB
Adhesive bonding	EPI transfer + LED transfer	5XX 850 Gemini
Laser Lift Off	EPI substrate removal	850DB
Metal Bonding	Substrate MOS Driver substrate	5XX Gemini

Smart pixel process flow is more complicated and can require additional aligned bonding.

µLED | Micro Display

2. Reconstituted wafer 3. Hybrid bond Carrier removal, LED wafer reconstitution, 4. 1. planarization and planarization, patterning. optics, color conversion patterning. Blank Si Blank Si LED substrate wafer Unpatterned EPI die transfer LED LED LED CMOS wafer CMOS wafer Blank Si Blank Si Next steps: color conversion/integration

EVG Technology	Application	Equipment
Laser Lift Off	EPI substrate removal	850DB
Wafer Reconstitution	Utilization of 300mm frontend semiconductor processing	320
Hybrid bonding	Fine pitch bond of the µLED EPI wafer to the CMOS driver wafer	GEMINI FB
NIL	Optics formation	7XXX
Spin & Spray coating	Color conversion layer deposition	1XX

µDisplay manufacturing requires high precision alignment bonding to fulfill the fine pixel Pitch requirements.

Technology Demonstrators

8 A A

www.EVGroup.com

EVG Wafer Bonding Technology

red LED epi	5.9 µm	
SU-8	4.2 μm	ales.
<i>n-</i> GaN	7.6 μm	N P P
sapphire -	2	

Courtesy of IMEC; Peng et.al.; IITC 2018

AnodicPitchNo
InterlayerFusion2 μmHybrid2 μmThermo-compression5 μm

EVG Unique Technologies

111

ComBond® | Unique high vacuum wafer bonding platform

Oxide-free metal bonding

- Room temperature heterogenous integration
- High vacuum encapsulation for leading-edge MEMS devices

Process Results | Overview

Bonding Materials		
Si (100)	Si (100)	
	Sapphire	
	GaN	
	Ge	
	LiNbO ₃	
	LiTaO ₃	
	Мо	
	Si _x N _y	
Si (111)	Si (100)	
51(111)	Si (111)	
Si(SiO ₂)	Si	
	Si(SiO ₂)	
	Si	
SiC (4H)	SiC (4H)	
	Poly-SiC	
Poly-SiC	Poly-SiC	
GaAs	InP	
	Si	
	SiC	
Au	Au	
Cu	Cu	
AI	AI	

Confidential

Co-D2W Bonding | Process Results – Hybrid Bonding

Edge Die

300mm 10x14 Dies

Center Die

Excellent collective die to wafer bonding performance

Bonding of wafers of different size enables seamless integration of EPI and CMOS wafers

NanoCleave

- Enables silicon wafers as temporary carriers
- Laser debonding through silicon carriers
- Nanometer precision
- Ultrathin (<10µm) die and wafer processing
- Fusion bonding compatible
- Inorganic and front-end processing-friendly
- Stable < 1000 DegC

Device DB interface

Thank you!

Deta, design and specifications may not amutaneously apply, or depand on infinidual equipment configuration, process conditions and materials and may vary accordingly. EVG reserves the right to change date, design and specifications who up for notice. All mademarks, logies, website

Data, design and specifications may not simultaneously apply; or depend on individual equipment configuration, process conditions and materials and may vary accordingly. EVG reserves the nght to change data, design and specifications without prior notice. All trademarks, logos, website addresses or equipment names that contain the letters or words "EVG" or "EV Group" or any combination thereof, as well as the following names and acronyms are registered trademarks and/or the property of EV Group: BONDSCALE™, ComBond®, CoverSpin™, EZB®, EZ Bond®, EZD®, EZ Debond®, EZR®, EZ Release®, GEMINI®, HERCULES®, HyperIntegration®, IQ Aligner®, LowTemp™, MLE™, NanoAlign®, NanoFill™, NanoSpray™, NIL-Potonics®, OmniSpray®, SmartEdge®, SmartNIL®, SmartView®, The Triple "1° Company Invent-Innovate-Implement®, Triple i®, ZoneBOND® is a registered trademark of Brever Science, Inc. Other product and company names may be registered trademarks of their respective owners.

Confidential