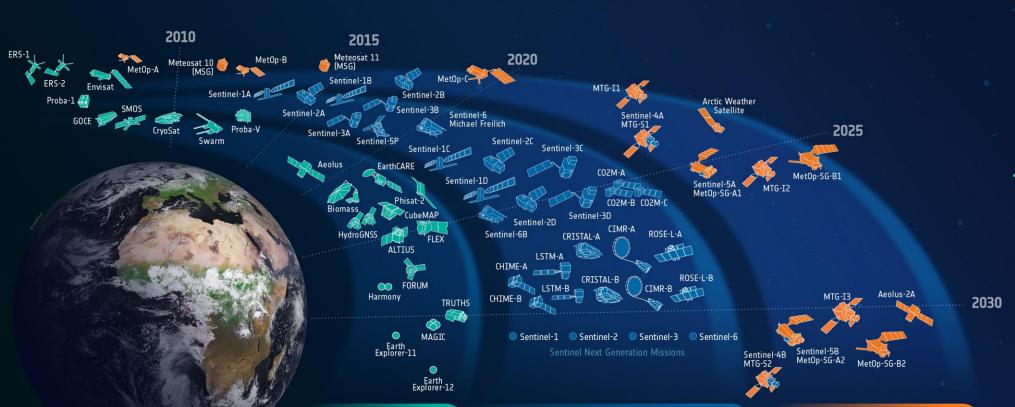


Photonics technologies for Climate Change Monitoring from Space

Arnaud Hélière, European Space Agency

Head of the Optical Instruments section, Directorate of Earth Observation Programmes

Taking the Pulse of Our Planet


ESA-Developed Earth Observation Satellites

Science

esa

Copernicus

Satellites
Heritage 04
Operational 15
Developing 41
Preparing 22
Total 82

+ Third Party Missions

EUMETSAT

Meteorology

EarthCARE: Earth Cloud, Aerosol mission

- Global observations of clouds, aerosols and radiation
- Collaboration with JAXA
- Launch date 2024

- Payload:
 - Atmospheric UV backscatter Lidar
 - Doppler Cloud Profiling Radar (JAXA)
 - Multispectral Imager
 - Broadband Radiometer

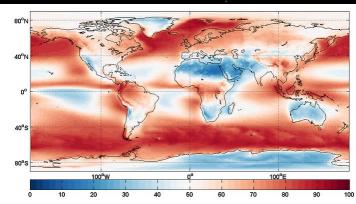
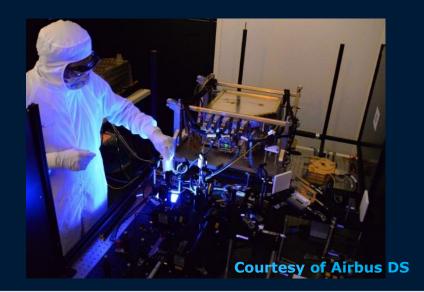
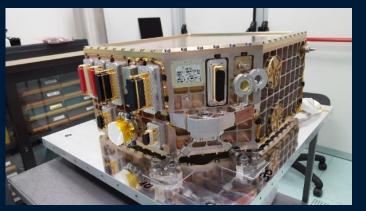



Figure: Climatological mean total cloud fraction averaged over 26-year period (1984–2009) from Climate Monitoring Satellite Application Facility (CM SAF) Cloud, Albedo (CLARA-A2). The CM SAF project is a part of the ground segment of the European organization for the exploitation of

EarthCARE Lidar technologies

- Diode-pumped Nd:YAG laser (1064 nm), with frequency tripling stage to generate the third harmonic of 355 nm
- Frequency stabilisation with injection seeding through optically fibered reference laser path.
- High spectral resolution filter centred on the laser wavelength:
 Fabry-Perot etalon
- Separation of the Rayleigh and Mie channels by polarizers
- Quasi photon counting memory CCD

Beam Expander

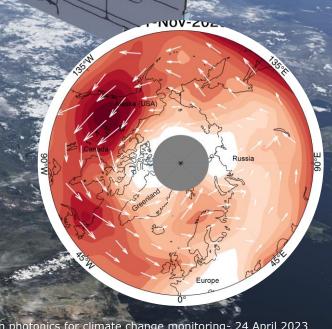

Courtesy of SODERN

Laser main requirements		
Pulse energy	38 mJ UV	
PRF	51 Hz	
Divergence	<200 µrad	
Linewidth	< 50 MHz	
Frequency	< 50 MHz	
stability	over 1 month	
Total number of shots	>5 Gshots	

Power Laser Head

Courtesy of Leonardo

Aeolus: Wind Lidar mission

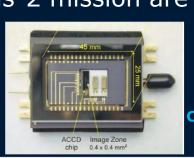

Close to 5 years of successful operation

<u>bjectives</u>

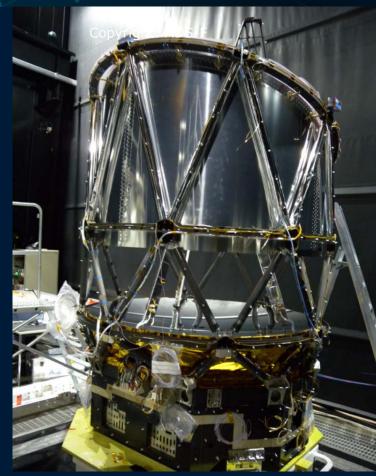
- To improve the quality of weather forecasts
- To advance our understanding of atmospheric dynamics and climate processes;
- Demonstrate space-based Doppler Wind LIDAR
- Observation means:
- Provide global measurements of horizontal wind profiles in the troposphere and lower stratosphere

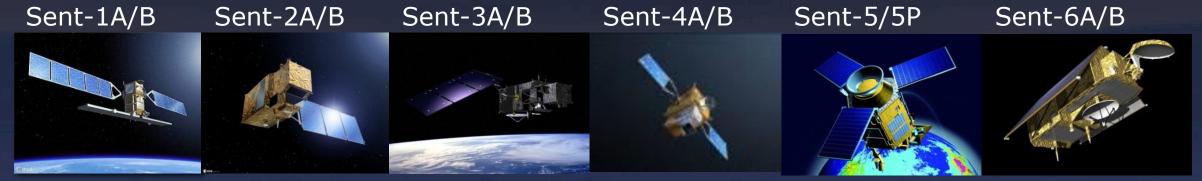
Payload

■ ALADIN: Direct detagged UV Doppler lidar

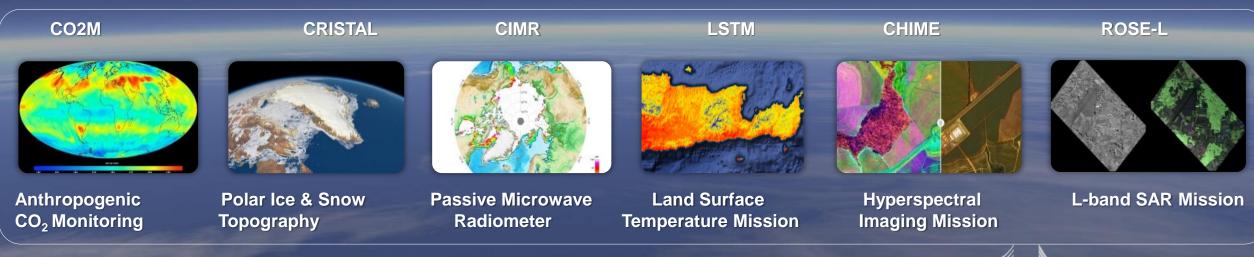


AEOLUS: ALADIN Instrument and technologies


- ☐ Mono-static concept, telescope: 1.5m diameter
- □ 2 receiver channels based on HR interferometers:
- Mie receiver (Fizeau) to determine winds from aerosol & cloud backscatter.
- Rayleigh receiver (Fabry-Perot etalon) to determine winds from molecular backscatter
- ☐ High energy UV laser: up to 100mJ @355nm, PRF: 50Hz
- □ Detection using 2 Accumulation CCD's (back illuminated thinned CCD's)


Courtesy of Teledyne e2v

Courtesy of Airbus DS

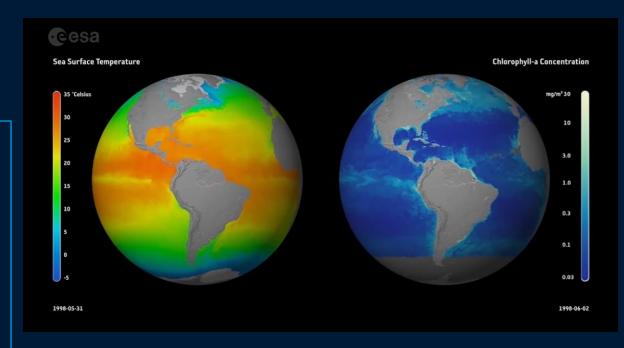


Copernicus: European leadership in EO

- European space flagship programme, led by the EU, for global monitoring of the environment
- Missions include Sentinels and contributing missions (from national Agencies and companies)

Sentinel-3: Global Land and Ocean Mission

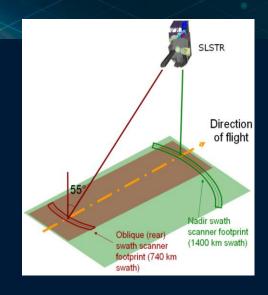
Optical Mission Payload


- Ocean and Land Colour Instrument (OLCI)
- Sea and Land Surface Temperature Radiometer (SLSTR)

Topography Mission Payload

- Synthetic Aperture Radar Altimeter (SRAL)
- Microwave Radiometer
- GNSS, DORIS, LRR

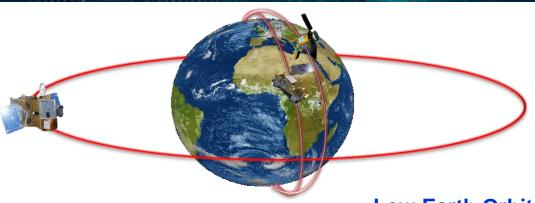
Mission Objectives


- Sea and land colour data
- Sea and land surface temperatures
- Sea-surface and land-ice topography
- High-resolution altimetry for synthetic aperture processing
- Land synergy products from optical instrument data

Sea and Land Surface Temperature Radiometer

- Global coverage of Sea Surface skin Temperature (SST_{skin}) with zero bias and uncertainty of ±0.3K (1σ)
- Stirling cooler
- Dichroic filters
- Two-points calibration on board blackbody and sun diffuser (PTFE, Zenith)
- CMOS VIS detectors @ 260K
- MCT TIR detectors @ 85K

Swath width	Nadir view Oblique view	1400 km 740 km
Spectral channels (μm)	VIS SWIR MWIR/TIR Fire	0.555-0.659-0.8 1.375-1.61-2.25 3.74-10.85-12.0 3.74-10.85
SSD		0.5 km VIS-SWI 1.0 km IR-Fire
Radiometric resolution	VIS SWIR MWIR TIR Fire-1 Fire-2	SNR>20 SNR>20 NEDT < 80 mK NEDT < 50 mK NEDT < 1 K NEDT < 0.5 K


Courtesy of LEONARDO

Courtesy of AIM

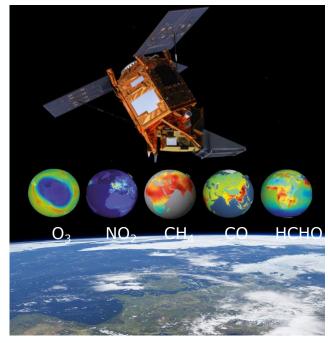
The Sentinel Missions for Copernicus Atmosphere Service Cesa

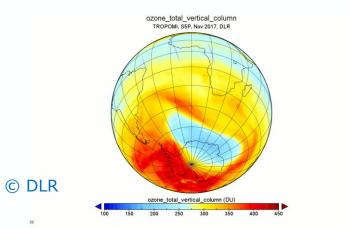
GEOstationary (GEO)

- Hourly revisit time over Europe
- Mainly air quality
- Diurnal cycle of tropospheric composition

→ Sentinel-4

UV-visible-NIR spectrometer embarked on the EUMETSAT MTG-S platforms (synergy with other sensors)

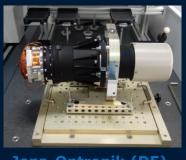

Low Earth Orbit (LEO)


- Daily revisit time global coverage
- Climate, air quality, ozone & UV
- Tropospheric & stratospheric composition
- → Sentinel-5

UVNS spectrometer embarked on the EUMETSAT MetOp-SG platforms

→ Sentinel-5 Precursor

Single-satellite carrying the TROPOMI UVNS spectrometer as a precursor to sentinel-5


Sentinel- 4: Spectrometer targeting air quality (O3, NO2, SO2, HCHO and aerosols)

UV-Visible and NIR infrared spectrometer- 8km spatial resolution- 60 minutes repeat cycle

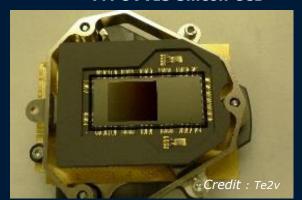
FM Telescope and UVVIS spectrometer

Jena-Optronik (DE)

Aperture Cover Optical Path Sun calibration Beam Splitter Assembly NIR Spectrometer OA Thermal Heat Shields Sun Baffle Grating Diffuser Wheel TSA Structure Diffuser Wheel White Light Source GRISM Assembly Heater Envelope Scan Mirror **UV-VIS Camera** Scanner Cover

Summer FoV

2-axis FM scanning mechanism and scan mirror



redit : RUAG

High-performance onboard calibration sources (solar diffusers, white light source, LEDs)

FM UVVIS Silicon CCD

Sentinel 4 UVN PFM instrument

Airbus DS (DE) courtesy

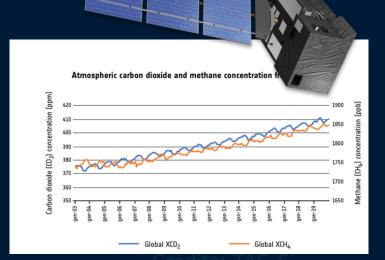
CO2M – Europe's first operational CO2 mission

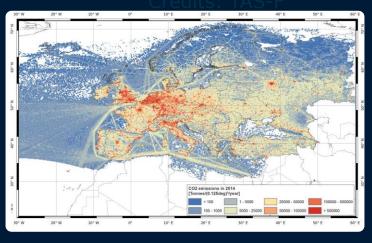
Planned to be operational from 2025/26

Telescope	Common telescope with polarisation scrambler and entrance slit homogeniser
Collimator	One reflective collimator, common for all bands
Band separation	3 Dichroic plates split used in collimated beam
Diffraction grating	4 Prism-Grating-Prism assemblies
Imagers	Glass (VIS/NIR) and silicon (SWIR-1/SWIR-2); band-pass filters
Detectors	Mercury-Cadmium-Telluride CMOS detectors in SWIR; Si CMOS in VIS-NIR

Key technologies

Fiber-based entrance slit made of stacked rectangular multi-mode fibers

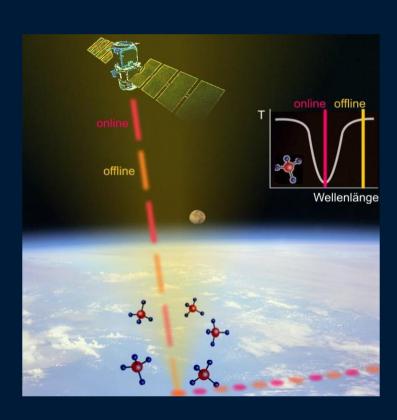

(TASiCH/Optec)



Diffraction gratings based on Prism-Grating-Prism assemblies (Fraunhofer IOF for NIR & SWIR)

CMOS (Teledyne E2V) and MCT (Lynred) detectors

CO2 or Methane Monitoring – Lidar missions


Differential Absorption Lidars are also able to provide column integrated CO2 or CH4 measurements

This is being implemented through MERLIN space mission by Germany/France

ESA studied A-SCOPE mission for CO2 measurements with a DIAL instrument

Key photonic technologies were developed for:


- Laser source at 1.6 or 2 micron (OPO laser design or fibred lasers)
- Frequency stabilization: involving technologies such as frequency combs
- Power monitoring reference
- Fibred receivers
- MCT APD's are being also developed in Europe

Quantum Missions for Climate

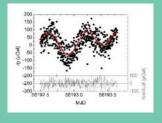
monitor climate changes with constellation of enhanced quantum sensors

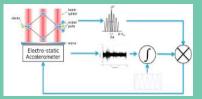
to provide, enhance and enable new Essential Climate Variables for a more sustainable Earth

monitor and prevent in time major hazards due to climate change

ECVs

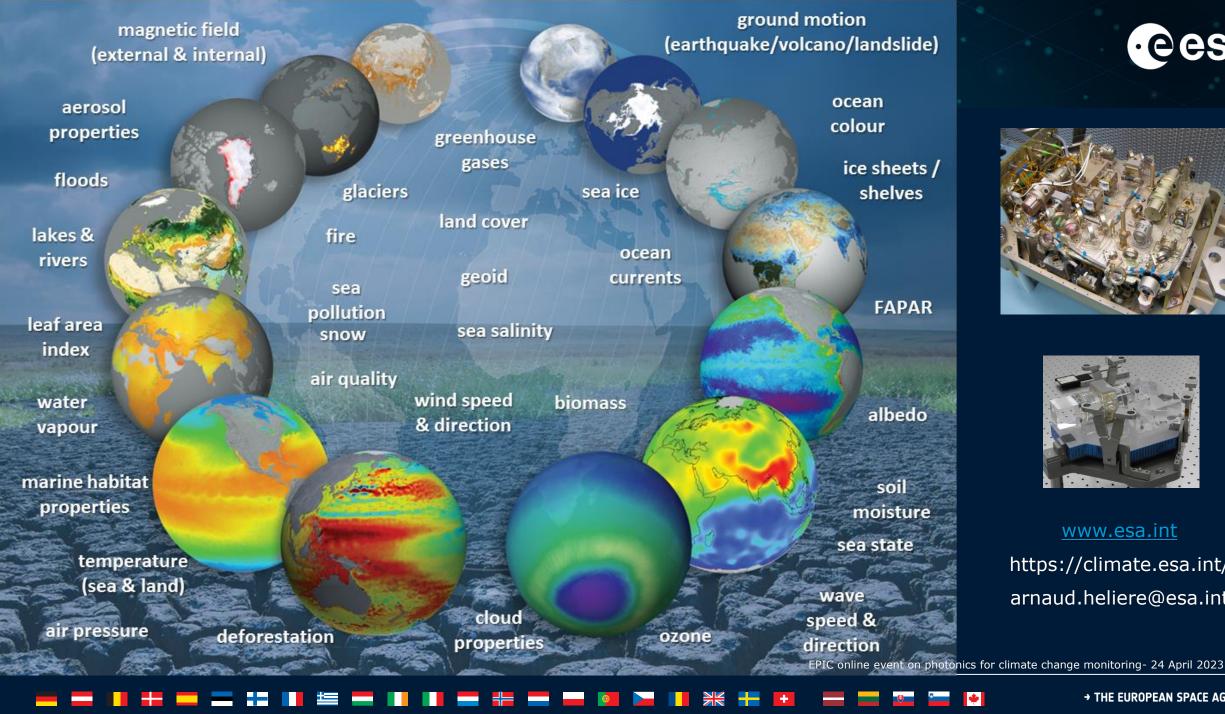
User needs

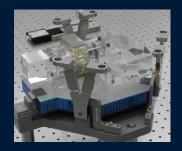



Opening new application and services

Enter Quantum Technological Breakthrough for new generation of enhanced sensors







www.esa.int

https://climate.esa.int/ arnaud.heliere@esa.int