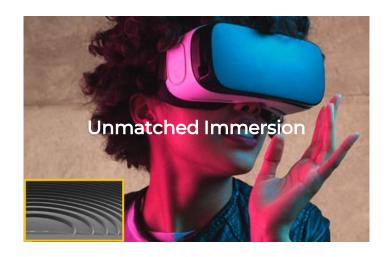
MORPHOTONICS Nanoimprint technologies

111

1111

.....

pplying a Display Manufacturing Mindset to High-volume AR Waveguide Product


Umn

URD

ann

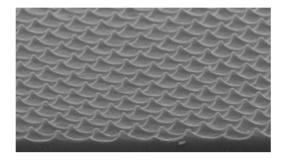
Zheng Li 11 May 2023 Zheng.Li@morphotonics.com


Unprecedented visual experiences for the masses!

Design freedom to use any micron/nano structures for high-volume products Key enabler is our large-area nanoimprinting technology!

Business Scope

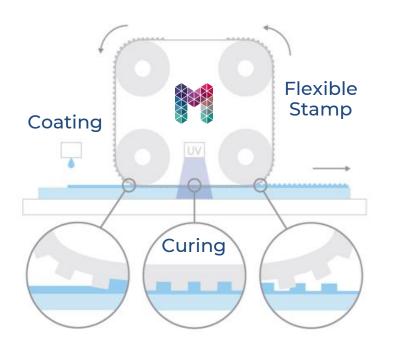
- **Problem:** Address the increasing demand (16% CAGR through 2027) of nanoscale surface customization for new visual experiences
- Solution: Deliver the ONLY imprinting solution for micro-nano structures, that allows design freedom for displays + high volume manufacturing


Background

- Founded in 2014. 40 Employees. 1000 m² cleanroom.
- IP: > 25 patents worldwide (5 patent families), 13 pending
- >20 tools sold worldwide, Roll-to-Plate (R2P) technology proven in production

Products & Platform Technology

- Modular OEM platform approach from R&D to mass production;
- From sampling & master upscaling to turn-key production line
- Proprietary consumables: UV curable resins & flexible stamps



Large Area Nanoimprinting | Any Optics for Any Display

Roll-to-Plate (R2P) Nanoimprinting Technology

Any Display: Position accuracy: High throughput: Glass & Foil: Cost effective:

Any Optics:

Precise structures w/ feature sizes from 500 μ m to 50 nm Design freedom – Slanted, steep or high aspect ratio proven

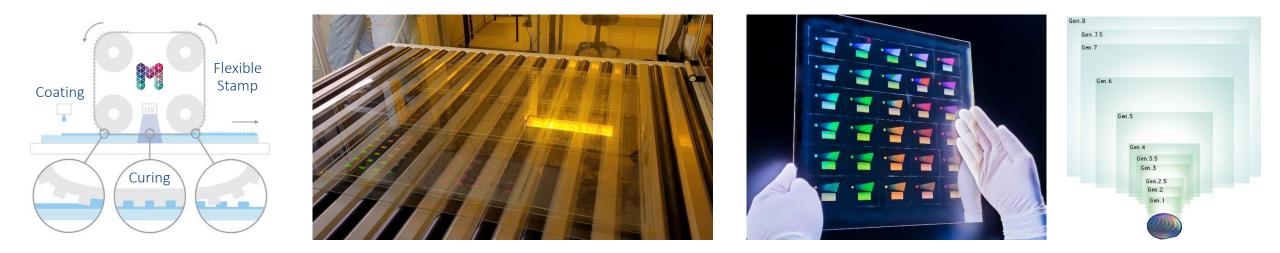
Large-area replication up to $1.1 \times 1.5 \text{ m}^2$, enabling high throughput for any display size

High replication fidelity w/ dimension stability in picometer range

Imprint cycle times < 2 minutes in mass production

Rigid & flexible substrates, 100+ resin choices

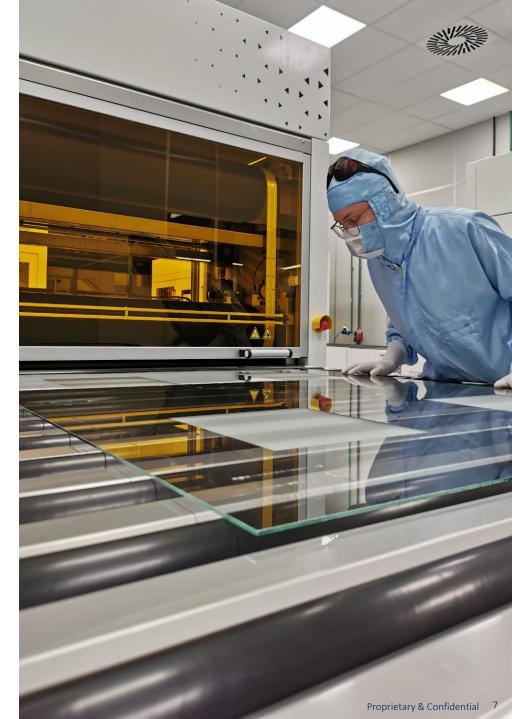
Stamp lifetime >1000x possible in mass production (texture dependent) Minimal resin waste through active area control Imprint cost < 0.5 USD/ smartphone product



SPIE 2022

Large-area nanoimprinting is key for high-volume waveguide production

- ✓ Roll-to-Plate nanoimprint technology using a uniform line pressure is scalable to larger areas
- ✓ Our solution follows display industry manufacturing logic
- ✓ Large substrates or multiple wafers are imprinted in one pass
- ✓ Use of dedicated proprietary flex stamp materials, in-house master-upscaling & process know-how

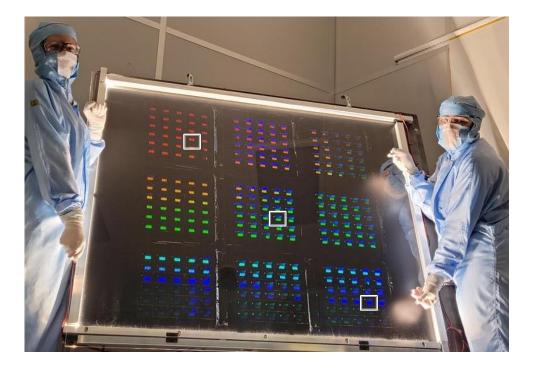


For AR to work, it is all about quality:

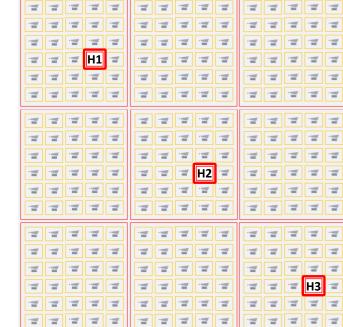
- o Highest FOV
- o Highest contrast
- Longest battery lifetime
- Lightweight attractive device
 Preferably at affordable costs

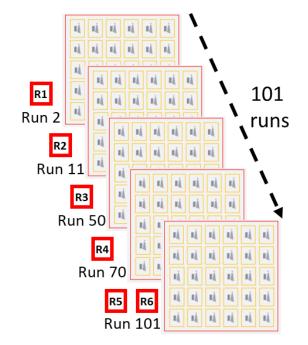
Large-area nanoimprint technology must provide:

- ✓ High replication quality across all manufacturing steps Imprinted waveguide is true to the design & master
- ✓ Reproducible in high volume
- ✓ Uniform across large area



Closed loop between design-mastering-imprinting-materials-testing is essential for successful product





Replication quality tested for contrast, MTF, and pitch variation Each measured across the large imprint area & reproducibility tested for over 100 production runs

270 waveguides replicated GEN5 size

Homogeneity (named H1, H2 & H3)

Reproducibility (named R1-R6)

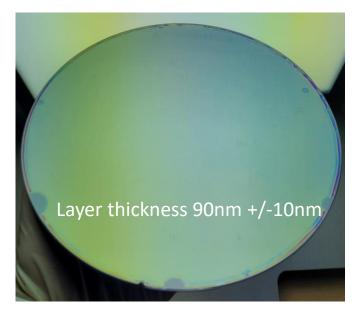
Pitch uniformity

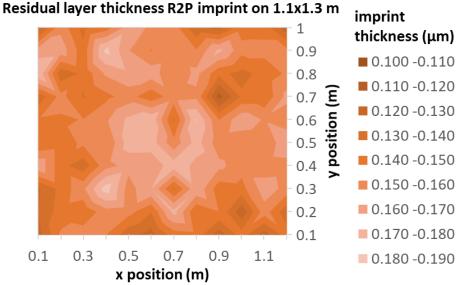
- Thermal, humidity & stretch changes well controlled, using High Dimension Stability flexible stamp (expansion of 5 μm/meter per °C)
- Measurement by Optofidelity using Littrow-diffractometer
- Waveguide track-pitch variation in 100 consecutive imprints:
 - <10 picometer inside the outcoupler & expander
 - <20 picometer variation over the 2 runs

Homogeneity (H1, H2 and H3) & Reproducibility (R1-R6) test waveguides

	Design	Master	H1	H2	H3	R1	R2	R3	R4	R5	R6
Incoupler	415 nm	414.971 nm	414.979 nm	414.972 nm	414.962 nm	414.972 nm	414.982 nm	414.954 nm	414.955 nm	414.962 nm	414.911 nm
Expander	293.45 nm	293.434 nm ± 2pm (std.dev)	293.465 nm ± 9pm (std.dev)	293.455 nm ± 9pm (std.dev)	293.442 nm ± 7pm (std.dev)	293.444 nm ± 7pm (std.dev)	293.444 nm ± 6pm (std.dev)	293.444 nm ± 6pm (std.dev)	293.444 nm ± 6pm (std.dev)	293.448 nm ± 6pm (std.dev)	293.460 nm ± 9pm (std.dev)
Outcoupler	415 nm	415.005 nm ± 7pm (std.dev)	414.998 nm ± 17pm (std.dev)	414.996 nm ± 15pm (std.dev)	415.016 nm ± 20pm (std.dev)	414.990 nm ± 16pm (std.dev)	414.984 nm ± 26pm (std.dev)	414.986 nm ± 19pm (std.dev)	414.989 nm ± 20pm (std.dev)	414.991 nm ± 18pm (std.dev)	414.999 nm ± 24pm (std.dev)

Residual layer thickness

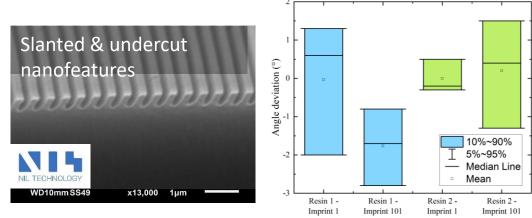

Waveguide demo


Waveguides have been designed with 4.6 µm layer thickness. Variation in layer thickness on wafer with 30 waveguides is 5%, using the solvent free PixNIL SFT1 resin with viscosity of 570 mPas·s.

Layer thickness variations can be reduced by process modification

- Variation of ± 10nm have been achieved on 200mm wafer
- Variation of ± 35nm has been demonstrated for GEN5 surface

Both using low viscous solvent free resins



Complete design freedom for further process optimization

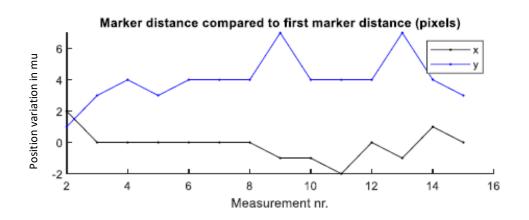
Material set can be tuned to replicate different textures from slanted nano-gratings to micron high Fresnel lenses

Slanted gratings for AR waveguides

- Replication of slanted gratings up to 50-deg demonstrated
- Stable replication quality re-using the flex stamp
 - No significant angle deviation after 101 imprints
- Replication of designs with different slanted gratings possible

Fresnel lenses for VR

- Replication of micron steep slopes with varying slope orientation
- Well controlled resin shrinkage <6%


Based on work done together with Seisenbacher & Joanneum Research in EU Phabulous project

Morphotonics develops dedicated Portis X-NIL for aligned imprinting:

- \circ Aligned imprinting at ± 3µm accuracy over full 600 x 600mm surface (incl. tilt)
- Enabling imprinting of dual sided AR waveguides

Effect of one direction prism imprint on laser light.

Resulting effect of the multi-layer imprint on laser light.

 $\pm 3\mu -$

For a batch of imprint

500

Large-area nanoimprinting is a viable AR waveguide manufacturing solution

Visit us at Booth #201

Any Optics: Replication of different complex textures (slanted gratings, binary & blazed gratings, fresnel lenses)

- **Any Display:** From AR glasses, automotive HUDs to smartwatches, tablets & TV size displays
- **Any Size:** Production at GEN5 size (1.1x1.3m), imprinting on single or multiple substrates

Our large-area nanoimprint technology is already adopted by various display manufacturers for 3D, Anti Glare, and Augmented Reality applications

MORPHOTONICS

Nanoimprint technologies

Visit us:

May 23-25 info@morphotonics.com

Special thanks to all our Morphotonics colleagues for their dedication & hard work and to our valuable partners LightTrans, NILT, Schott, Optofidelity, and Pixelligent