

dispelix

BRINGING IT ALL TOGETHER – XR DISPLAY SOLUTION

Comfort & Performance

JUSSI RAHOMÄKI, CPO | DISPELIX

dispelix

Founded 2015 Located in Finland, US and China Enabled by 150+ talented employees 100+ patents and 200+ patent applications

Full XR display solution

High refractive index materials Patented waveguide architectures Proprietary waveguide design software LED and laser waveguide platforms Manufacturing technology Long-term stability and reliability

Designed for visual & wearable comfort

Comfort

See-through

Lightweight

Compact

Social acceptance

Eye-contact

Privacy

Aesthetics

Consumer-ready image quality

Sharpness

Contrast 40% @ 16 lp/deg

White point

Minimized color radius & shift from white, i.e. D65 CIELUV space

Rich and deep colors

Uniform illumination over entire eye-box & FOV by full color spectrum

Brightness

Display brightness competes with ambient light

- Full moon 0.25 lux
- Living room 50 100 lux
- Office light 300 500 lux
- Overcast day 1,000 2,000 lux
- Bright sunlight 111,000 lux

Required brightness depends on user case

- Indoors ~500 nits
- Outdoors 1000 3000 nits
- Fighter jet pilot ~10,000 nits

XR display brightness is a combination of

- Waveguide combiner brightness efficiency
- Display engine's luminous flux

	Luminous efficacy	Luminous power	XR display
	(Im/W)	(Im)	luminance (nits)*
µ-LED	1~8	3~5	1000 ~ 1600
LCoS	7 ~ 10	2~5	600 ~ 1600
DLP	7 ~ 15	6 ~ 10	2000 ~ 3000

*) Dispelix Selvä 30° FOV AR 16:9, brightness efficiency 310 nits/lm

Dispelix AR displays are suited for indoor and outdoor user cases

Convoluted inter-dependencies

- Brightness ↗ Battery lifetime ↘
- Brightness <a>7 Thermal Management Issues <a>7
- Brightness ↗ Field-of-View ↘
- Field-of-View ↗ Eye-relief ↘
- Field-of-View ↗ Eyebox ↘
- Eye-relief ↘ Wearable comfort ↘
- Eyebox 🛛 Visual comfort 🖄

 \rightarrow Multi-objective optimization problem for the entire system

Proprietary Design tool

Human Visual Model

Voice of Customer

Dispelix Waveguide Studio

Optimised display design

Interface fit

Coupling efficiency

Exit pupil diameter and coupling angles are matched with in-coupling grating

Brightness efficiency

Source luminous power optimization in waveguide combiner

Gratings are fine tuned to match source spectrum

Image artefact elimination

Control straylight and surface reflections at incoupling

Form factor

Tilts

Dimensions

Weight budget

Prescription integration

Monolithic integration in development

Searching partners

Ecosystem

dispelix

Dispelix Service Model

From Design to Delivery

