

Bridge Monitoring with Fiber Optic and Remote Sensing Techniques

Werner Lienhart

Who are we?

IGMS (Institute of Engineering Geodesy and Measurement Systems)

- University institute of TU Graz, Austria
- Special focus on monitoring of civil structures and natural phenomena
- Fibre optic sensing since 1999

Who are we?

IGMS (Institute of Engineering Geodesy and Measurement Systems)

- University institute of TU Graz, Austria
- Special focus on monitoring of civil structures and natural phenomena
- Fibre optic sensing since 1999
- Use of geotechnical, geodetic and fibre optic sensors
- More than 30 years of experience in the development, installation and operation of automated warning and alarming systems
- www.igms.tugraz.at

Fibre Optic Sensors

Total Stations Radar Interferometer

Laser Scanner Digital Levelling Systems GNSS

UAVs

Tilt Sensors

Who are we?

IGMS (Institute of Engineering Geodesy and Measurement Systems)

- University institute of TU Graz, Austria
- Special focus on monitoring of civil structures and natural phenomena
- Fibre optic sensing since 1999
- Use of geotechnical, geodetic and fibre optic sensors
- More than 30 years of experience in the development, installation and operation of automated warning and alarming systems
- www.igms.tugraz.at

ACI Monitoring

- TU Graz Spin-off
- Focus on distributed fiber optic sensing
- Design, development, installation and operation of DFOS monitoring systems
- www.aci-monitoring.at

IGMS Fibre Optic Applications

Graz University of Technology

20.04.2023

EPIC - Meeting

IGMS Fibre Optic Applications

Fibre Optic Real World Installations

Bridges

Many structures at the end of their lifetime

• Example German A8 Highway April 2023

IGMS Bridge Projects

Existing structures

- Monitoring to ensure a safe operation
- Monitoring to extend the lifetime

Important monitoring parameters

- Cracks
- Static structural reaction (e.g. temperature changes)
- Dynamic structural reaction (e.g. due to traffic)

Component Testing

Graz University of Technology

-

Component Testing & Calibration

IGMS measurement lab

- Fully airconditioned 20°C ± 0.3°C
- Vibration isolated foundations

- Static strain calibration
- Temperature calibration
- Dynamic testing
- Long term evaluation

Static Strain Calibration

Automated calibration facility

- Interferometric reference system
- Sensor lengths from 0.1 to 30 m
- Modular mounting systems
 - Strain transducers (SOFO, FBG)
 - Bare Fibers
 - Distributed sensor cables

Dynamic Strain Evaluation

Local mechanical excitation

- Mechanical shakers
- Piezo stretchers

Acoustic excitation

- 8 stretched segments with 10 m each
- Speakers for constant frequencies or sweeps

SEAFOM MSP-02 setup

• 40 km with 3 stretchers

Crack Monitoring

Graz University of Technology

20.04.2023

EPIC - Meeting

Crack and Strain

Strain pattern in case of a crack depends on

- Crack width
- Spatial resolution of instrument
- Used cable
- Used adhesive

Components of Surface Mounted DFOS Crack Monitoring

High resolution instrument

- Spatial resolution 10 mm or better required
- E.g. OFDR

Sensing cable

- Fibre has to survive the installation
- Strain has to be transferred reliably from the cable surface to the fibre core

Adhesive

- Homogeneous bonding of cable along entire length
- No creep, no temperature effects, ...

Mounting and loading tests

- Different cables/fibres
- Different adhesives
- Different surface preparation
- Different environment

Graz University of Technology

Example of Laboratory Investigations

Test specimens

- 3 plates
- 2.5 m x 0.9 m x 0.2 m
- Different cables applied to the surface

Vertical loading

- Linear increase
- Cyclic change
- Ageing simulation

Reference measurements

- LVDTs
- Visual measurements

measurement time

New crack occurring

 Clean strain peaks visible as crack is opening

Accelerated ageing

- 1000 cycles for 1 h
- Measurements
- Another 1000 cycles
- • •

Accelerated ageing

- 1000 cycles for 1 h
- Measurements
- Another 1000 cycles
- • •

1 h

2 h 3 h

5 h

6 h

7 h

8 h

9 h 10 h

Laboratory Investigations

Accelerated ageing

- 1000 cycles for 1 h
- Measurements
- Another 1000 cycles
- ...

Result

- Well reproducible strain profiles
- No hysteresis

Structural Reaction to Temperature Changes

Monitoring of Bridge Beams

Bridge construction

- Entrance area of tunnel
- 10 Beams
- Surface covered with fiber protection plates

Monitoring of Bridge Beams

Bridge construction

- Entrance area of tunnel
- 10 Beams
- Surface covered with fiber protection plates

DFOS Sensing layout

- 1 loop with
 - 10 strain sensing sections orthogonal to driving direction
 - temperature sensing cable in driving direction
- Fully integrated into the communication network of the tunnel
- Measurement can be performed from the maintenance building without physical access to the tunnel

Monitoring of Bridge Beams

Strain / temperature reaction

- Thermal stresses resulting in temperature depended length changes of the tunnel itself
- Almost linear relation for all individual beam structures

Interpretation

- Estimated coefficient (about 9.1ppm) within specifications for concrete in literature
- Local distortions potentially result in significant deviations within the strain/temperature relation
- Confidence interval (3σ) indicates normal working range of realized DFOS system

Internet inter

Structural Reaction to Traffic

Wide Range of Sensors

Geotechnical Sensors

- IoT tilt sensor nodes
- Accelerometers

Geodetic Sensors

- Laser scanners
- Total stations

Wide Range of Sensors

Geotechnical Sensors

- IoT tilt sensor nodes
- Accelerometers

Geodetic Sensors

- Laser scanners
- Total stations

Distributed Fibre Optic Sensors

- Rayleigh measurements
- Brillouin measurements

Bridge Deformation

Target Installation

51 1 5 150 Feld 6 Feld 7 0 ∆ H [mm] Feld 6 -5 Ξ¹⁰⁰ Brücke -10 **Prisma-Statisch** Längsachse O Prisma-Dynamisch -15└ 150 100 50 n Längsachse [m] 50 5 ~ H [mm] Feld 0¢ -5 ⊲ -10 -15 0 17:07:00 -2 -1 0 1 2 17:07:10 17:07:20 17:07:30 Aug 03, 2022 Querbewegung [mm] Zeit

Bridge Deformation

Bridge Deformation

Fiber Optic Installation

Cable routing

• 2 loops of strain and temperature sensing cable

Fiber Optic Installation

Cable routing

• 2 loops of strain and temperature sensing cable

Distributed Acoustic Sensing

General

- Measurement of strain rates along the entire fiber
- Measurement rate of several kHz

 Strain rates at individual positions

Strain via integration

Comparison to Total Station Measurements

Total station

- Permanent tracking of prism
- Recording of angle and distance changes
- Calculation of 3D position changes

Comparison to strain changes

 Settlement of bridge deck causes negative strain at bottom of bridge beam

[Lienhart at al., 2023]

Dynamic Analysis

Vibration behaviour

 Can be assessed at any position of the fiber

Comparison to other techniques

 Identified frequencues fit well

Dynamic Analysis

Vibration behaviour

 Can be assessed at any position of the fiber

IGMS Bridge Projects

Existing structures

New structures

Graz University of Technology

20.04.2023

EPIC - Meeting

Bridges

New structures

- SHM interesting during construction phase
- Long term monitoring
 - Crucial is high accurate and complete zero measurement
 - Interesting phase starts 20 to 30 years after construction

Graz University of Technology

Does FOS work after decades?

Graz University of Technology

20.04.2023

EPIC - Meeting

Robustness

Summary

Fiber optic based bridge monitoring

- Failure is not an option
- FOS is part of the solution but not the only solution
- FOS offers unique opportunities

Path to move forward

- FOS has to become standard solution in tenders
 - = > standards and guidelines are important
- Prove advantages in successful case studies

EPIC - Meeting

References

Publications

- Winkler M, Monsberger C, Lienhart W, Vorwagner A, Kwapisz M (2019) Assessment of crack patterns along plain concrete tunnel linings using distributed fiber optic sensing, Proc. 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR): 8 pages
- Monsberger CM, Lienhart W (2022) Long-term structural integrity monitoring of inner tunnel linings using distributed fiber optic sensing. Proc. 11th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-11), Montreal: 4 p
- Monsberger CM, Lienhart W (2021) Distributed Fiber Optic Shape Sensing of Concrete Structures. Sensors 2021, 21, 6098: <u>https://doi.org/10.3390/s21186098</u>
- Lienhart W, Strasser S, Dumitru V (2023) Distributed vibration monitoring of bridges with fiber optic sensing systems, 10 p., to be presented at EVACES conference in September 2023