

EPIC Meeting on Fiber Sensors at HBK FiberSensing

Raman & Brillouin Distributed Sensing Design Paths to Easy Deployment

Daniele Costantini, Ph.D.

Global Product Marketing Manager – Fiber Test Systems

April 19th 2023

VIAVI Market Leadership

For Complex Network and Sensing Issues

TEST AND MEASUREMENT

Fiber

Cable and Access

Enterprise

Metro and **Transport**

Lab Production and Manufacturing

WIRELESS AND AVIONICS

5G Test and Assurance

Location Intelligence

Land-Mobile and Military Radio

Aerospace, Nav/Comm, and Transponder

SECURITY, SENSING, AND AUTHENTICATION

3D Sensing

Anti-Counterfeiting

Spectral Sensing

Automotive

Government and Aerospace

VIAVI in Europe

SCOTLAND

• Edinburgh (Services)

IRELAND

Dublin (Wireless)

ENGLAND

- Newbury (RAN, Geolocation)
- Stevenage (Wireless)

FRANCE

- Saint-Étienne (Fiber Optics)
- Plaisir
- Saint-Herblain (Railway Telecoms)

SPAIN

Madrid

SWEDEN

Kista

GERMANY

 Eningen (Optical Transport, Fiber Optics)

AUSTRIA

Leobersdorf

ROMANIA

- Bucharest (Systems Software, Enterprise)
 - * R&D Center of Excellence

ITALY

- Milan
- Rome
- Torino (Railway Telecoms)

EUROPEAN FUNCTIONAL STAFF SUMMARY

RESEARCH & DEVELOPMENT

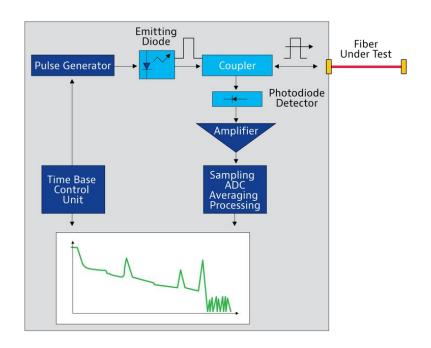
PRODUCT & SERVICES MANAGEMENT

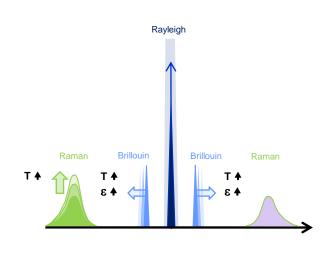
SALES & MARKETING

G&A FUNCTIONS

TOTAL EMPLOYEES

455


204

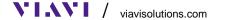

259

78

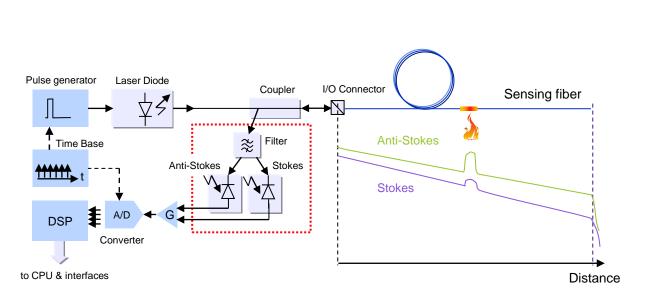
996

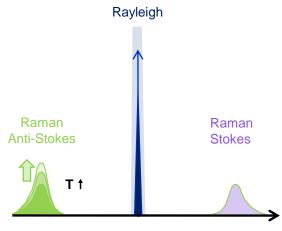
VIAVI OTDRs & Optical Fiber Sensing

Rayleigh OTDR


→ Fiber Monitoring - Loss, Reflections & Failures

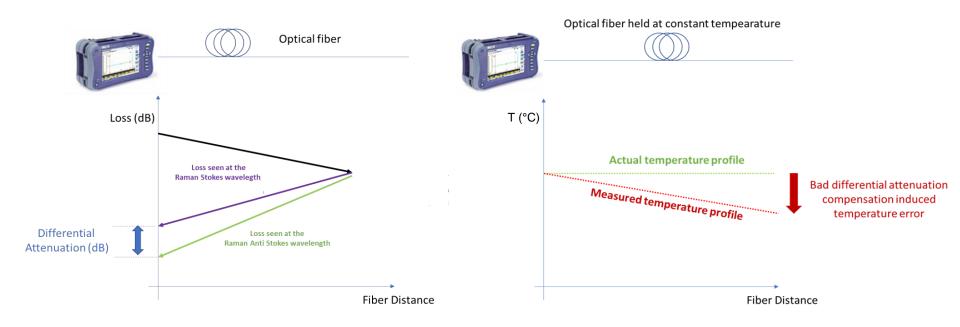
Raman OTDR


→ Distributed **Temperature** Sensing (**DTS**)


Brillouin OTDR

→ Distributed Temperature & Strain Sensing (DTS & DSS)

Raman OTDR → DTS



$$T(z) = \frac{\gamma}{\ln \frac{P_{s(z)}}{P_{as(z)}} + C - \Delta \alpha z}$$

Differential Attenuation $\Delta \alpha$

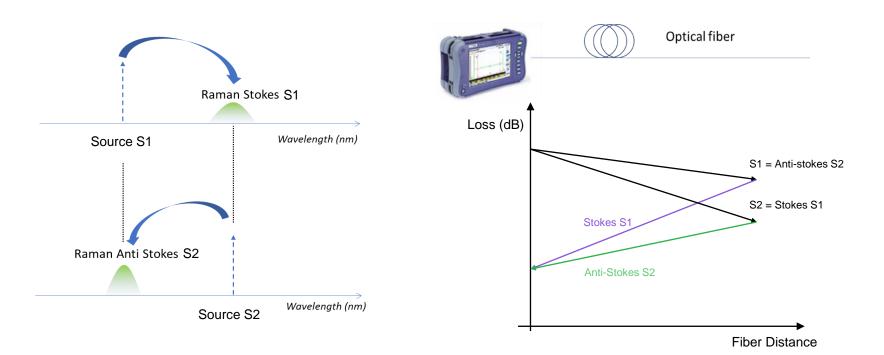
$$T(z) = \frac{\gamma}{\ln \frac{P_{s(z)}}{P_{as(z)}} + C - \Delta \alpha z}$$

Differential Attenuation $\Delta \alpha$

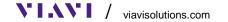
Single Source – Single Ended


- Correction factor to be set for each installed fiber
- Usable only for constant loss vs time & distance

Single source DTS
Single ended
Sensing fiber


Single Source – Double Ended

- Need to interrogate both sides of sensing fiber
- Complex set-up and only half sensing length



Dual Source – Single ended

 $\Delta\alpha$ Automatic Cancellation \rightarrow Accurate Temperature Measurements

©

Differential Attenuation $\Delta \alpha$

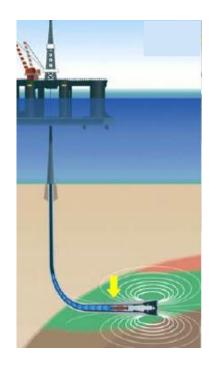
Single Source – Single Ended

- Correction factor to be set for each installed fiber
- Usable only for constant loss vs time & distance

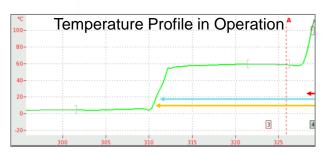
Single source DTS
Single ended
Sensing fiber

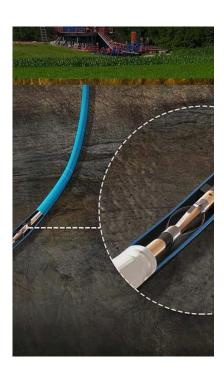
Single Source – Double Ended

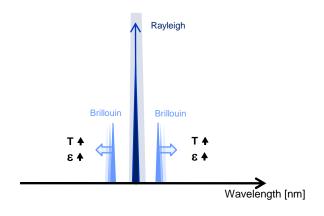
- Need to interrogate both sides of sensing fiber
- Complex set-up and only half sensing length

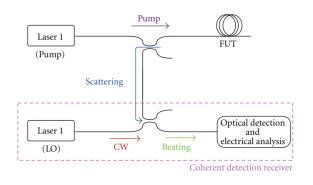

Dual Source – Single Ended

- Simple set-up & full sensing length available
- Automatic and accurate compensation
- Insensitive to variations of attenuation in time




Easy Field Deployment – e.g. MWD Umbilical





Brillouin OTDR → DTS & DSS

$$\begin{pmatrix} \Delta \vartheta_B \\ \Delta L P R \end{pmatrix} = \begin{bmatrix} \boldsymbol{C}_{\vartheta}^{\varepsilon} & \boldsymbol{C}_{\vartheta}^T \\ \boldsymbol{C}_{P}^{\varepsilon} & \boldsymbol{C}_{P}^T \end{bmatrix} \begin{pmatrix} \boldsymbol{\varepsilon} \\ \Delta T \end{pmatrix}$$

 $oldsymbol{artheta}_B$ Brillouin Frequency LPR Rayleigh/Brillouin Power Ratio

Landau-Placzek Ratio =
$$\frac{P_{Rayleigh}}{P_{Brillouin}} = \frac{f(attenuation)}{f(\varepsilon, T, attenuation)} = f(\varepsilon, T)$$

Easy Field Deployment – e.g. Electrical Power Cables

Removed requirement for

- special cables & designs with strain-free fibers
- additional instrumentation

