QWIP in space: dual-band radiometry for Earth Observation

R. Ivanov, D. Evans, S. Smuk, D. Rihtnesberg, L. Höglund, and E. Costard

M. Gulde*, A. Brunn*, M. Bierdel*

*Fraunhofer EMI / ConstellR AG

Outline

- Meet IRnova
 - About us
 - Product portfolio
- Dual-band QWIP FPA for E/O
- Conclusion

About IRnova

EU based IR detectors OEM Supplier

- Started in 1986 as a governmental research laboratory
- Independent and Privately owned since 2007

30+ years of IR sensor R&D and Manufacturing

- Leading QWIP and T2SL detector manufacturing
- Several 1000's of QWIP & T2SL detectors fielded
- Contract manufacturing for III-V material and SWIR detectors

Pioneers in Optical Gas Imaging

- MWIR and LWIR solutions for all addressable gases
- QVGA (320×256) and VGA (640×512) solutions available, HD in development

Strong Team and Excellent Facilities

- 70% staff share of PhD's and MSc's
- 2500 m² manufacturing facilities including 1300 m² of clean room
- ISO9001 : certified since 2015

Revolutionary technologies: T2SL and small pitch QWIP

R. Ivanov, (IRnova AB) for "EPIC Online Technology Meeting on Earth Observation" (2022)

Development history

Development history

R. Ivanov, (IRnova AB) for "EPIC Online Technology Meeting on Earth Observation" (2022)

QWIP in space dual-band radiometry for E/O

*the image credits: ESA

IRnova

R. Ivanov, (IRnova AB) for "EPIC Online Technology Meeting on Earth Observation" (2022)

Goal: global water monitoring • to mark water stress areas in agriculture Increase crop yield and optimize usage of fresh water

Challenge:

• Image in LWIR using dual-band mode Low-cost to keep affordable for constellation of CubeSats

AegIR: the detector solution for LiSR

- Monolithically integrated bandpass filters
- 320x256 @ 30µm pitch
- Spectral crosstalk = 10 %
- Operability: 99.79 % in LP band, and 99.65 % in SP band
- NETD @ F/1.2 & 2 ms int. time: < 25 mK (for 18 °C BB)

In partnership with:

https://www.spectrogon.com/

R. Ivanov, (IRnova AB) for "EPIC Online Technology Meeting on Earth Observation" (2022)

LisR: compact telescope with AegIR

40×10×10 cm, 6 kg

LisR: compact telescope with AegIR

40×10×10 cm, 6 kg

R. Ivanov, (IRnova AB) for "EPIC Online Technology Meeting on Earth Observation" (2022)

.. and just 18 months later – payload on the ISS

(Reached the ISS as part of Cygnus NG-17 resupply mission in March 2022)

LisR (with AegIR): Imaging quality

*Reference: previous missions

*the image credits: <u>ConstellR</u>

R. Ivanov, (IRnova AB) for "EPIC Online Technology Meeting on Earth Observation" (2022)

LisR with AegIR core

Conclusion

IRnova delivers high-end IR imagers covering entire IR range

We are agile, ready to customize off-the-shelf detectors for your needs

Dual-band QWIP for E/O

- State-of-the-art image quality
- Excellent long-term stability
- Core of LisR telescope, tested aboard the ISS

