Opportunities & challenges for the design of metalenses and metasurfaces. A pragmatic and case based overview

EPIC Online Technology Meeting on Metamaterials and Metalenses 09.01.2023

Lieven Penninck – CEO & Founder PlanOpSim

Bottlenecks in meta-surface design

- Make design fast, integrated and reliable
- Integration to system level
 - > Link from wave to ray scale not well developed
 - > System does not take full use of meta-surface possibilities
 - > Current models ignore higher order effects

❖ Fast Large Area Design:

- > Full wave algorithms scale poorly
- > Design is slow and area is limited
- > Multi-scale methods increase the limit but require approximation
- > Design iterations require specialists and lots of time

❖ Design for Manufacture is in embryonic stage

- > Most designs are nominal
- > Tools and methods for robust design are needed

40mm diameter metalens

Meta-optics project flow

System integration

- Ray tracing system design
 - >Idealized meta-surface
- Meta-surfaces informed system design
 - ➤ Dispersion and polarization control
 - ➤ Time band width limits
 - ➤ Higher order diffraction
- Cascaded to co-optimized design

Sample results

- Meta system
 - >30x smaller
 - ≥27% fewer losses
- Coupled design 100% necessary
- Nano informs system design
- System design determines structure & components

	17.5
	15.0 - 1530.0nm 1555.0nm 1625.0nm
	12.5 -
7.)	10.0 -
φ(rad.)	7.5 -
	5.0 -
	2.5 -
	0.0
	−50 −25 0 25 50 x(μm)

Case	Avg . Coupling loss	Diameter	System length	Volume
Benchmark	-0,57dB	1,2 mm	7,6 mm	34,4 mm ³
Spheric + metalens	-0,45dB	1,8mm	8,9 mm	90 mm ³
2 metalens (single wavelength)	-0,79dB	0,43mm	1,96mm	1,1 mm³
2 metalens (dispersion engineered)	-0,42dB	0,43mm	1,96mm	1,1 mm³

High speed large area design

- A 40mm lens is 500 000x larger than full wave simulation areas
 - ➤ Using multi-scale simulation the factor is 50-200
- Most time consuming aspect of design is the simulation of nano-structures
 - > Typical: several **10 000s of structures**
 - > Parametrized or free-shape structures
- Design contains a solver and an optimization loop
 - > Time spent = #calls x loop time
 - ➤ Loop time determined by EM solver
- Two approaches to speed up:
 - > Reduce #calls: smartest optimization alogrithm
 - > Reduce loop time: fastest solver

Large metalens

High speed large area design

- Inverse design:
 - > Various optimization algorithms
- Surrogate Solver
 - > Pre-trained NN replaces full wave
- Combined optimization + network
- * Requirement:
 - > Large training set generated by classical full wave
 - > Specific configurations

High speed large area design

- Surrogate solver and optimization methods can speed up meta-atom design up to 500 fold
- * PSO, Bayesian and adjoint method are most performant optimization algorithms
- Training takes more time than a classical design
- Future work:
 - ➤ Wide applicapility
 - > Larger area

	Total calculation time	Acceleration factor
Brute force sweep	19.55hr	1 (baseline)
Inverse design	8.9hrs	2
Neural network	0.53hrs	37
Genetic Algorithm + Neural netowrk	0,04hrs (3mins)	488

Robust Design: Yield and tolerancing example

- Failure modes and effects different from refractive lenses
- Monte carlo study for error tolerancing
- Sensitivity analysis reveals critical parameter and thresholds
- 25'230 metalenses simulated in this plot
- Component tolerancing should become linked to system tolerance

How can we make the difference for your metalens design? Get access to design examples, use cases, here:

> www.planopsim.com lieven.penninck@planopsim.com +32 485 565 772

Supported by

