

Ultrashort pulsed lasers for surface texturing of implants

Dr. Ainara Rodriguez (airodriguez@ceit.es)

Ceit

History and Mission

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

- Technological centre created in 1982 by the Engineering School of the University of Navarra
- Member of Basque Research and Technology Alliance

- Service to society and industry through non-profit research
 - through research projects (TRL4-TRL7)
 - training young researchers
 - disseminating knowledge

Light technology for precision in manufacturing

We use ultrashort pulse lasers (femtosecond pulses) to develop manufacturing processes with high precision for industrial applications.

Modification of injection moulds

Decorative Micro/nano Microfluidic elements diffusion patterns structures

Micrometric diffractive gratings

Complex optic elements

Decorative applications

Strucural coloring of surfaces

Selective decoating of metallic thin layers

Modification of transparent materials

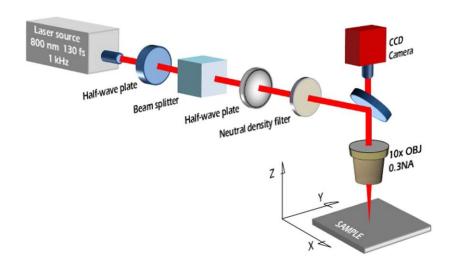
Light barriers Decorative elements Light Diffusers

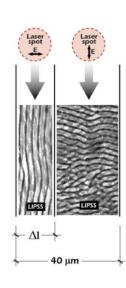
Structured current collectors for pouch & coin-type Li-ion batteries

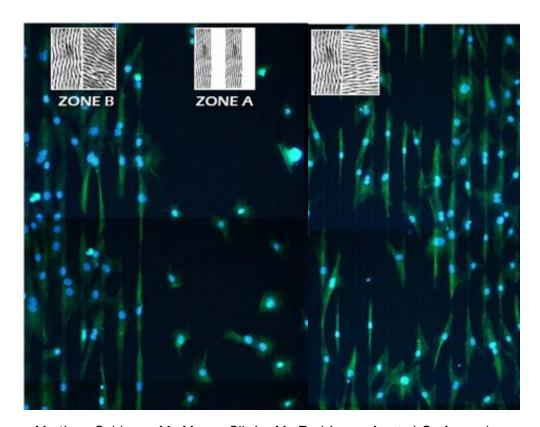
Superhydrophobic metallic surfaces with hierarchical structure

Surface treatment to enhance osseointegration

Surface texturing and edge treatment of cutting tools


Broadband omnidirectional antireflective surfaces


Surface treatment for control of cell migration


MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

First step: Demonstrate Functionality

- Laser Induced Periodic Surface Structures (LIPSS) to pattern stainless steel
- human Mesenchymal Stem Cells (hMSCs) tend to attach and preferentially align to the LIPSS nanopatterns oriented in a longitudinal direction
- No noticeable change in chemical composition.

Martínez-Calderon, M., Manso-Silván, M., Rodríguez, A. *et al.* Surface microand nano-texturing of stainless steel by femtosecond laser for the control of cell migration. *Sci Rep* **6**, 36296 (2016). https://doi.org/10.1038/srep36296

Laser4Surf – LIPSS for mass production of functional surfaces Ce

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

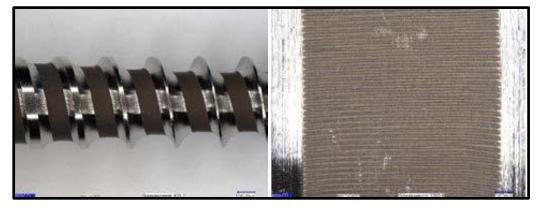
Second step: Demonstrate Industrial Application

- Technical specifications for Laser textured implants:
 - Have a good biocompatibility
 - Improve **osseointegration** with pre-defined topographic features
 - Technique:
 - Be clean and environment friendly
 - Be fast and cost effective
 - Be applicable on small and complex shape
 - **Meet regulatory standard**: No metal modification, no geometrical feature changes
 - Not to release adverse components
 - Have good mechanical properties

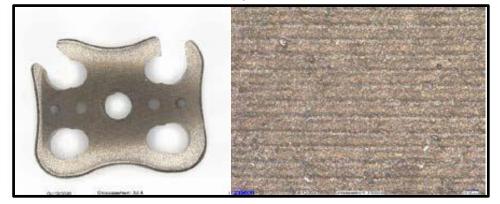
Laser4Surf – LIPSS for mass production of functional surfaces Cell

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Second step: Demonstrate Industrial Application


- Technique:
 - Be clean and environment friendly
 - Be fast and cost effective
 - Be applicable on small and complex shape

Laser Process



Dental screw

Cervical plate

Laser4Surf – LIPSS for mass production of functional surfaces Ce

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Second step: Demonstrate Industrial Application

- Technical specifications for Laser textured implants:
 - **Meet regulatory standard**: No metal modification, no geometrical feature changes
 - Not to release adverse components
 - Some leaching of Al, Fe and V; all values are well below the acceptable limit (0,6μg/implant)
 - Have good mechanical properties
 - Mechanical tests were performed
 - No significant difference in maximum insertion/removal torque or axial pull-out strength

Implants can be successfully textured using femtosecond laser processes

Cell migration can be controlled and osseointegration improved

Industrial scalability has been demonstrated

Ibaeta Building

Paseo de Manuel Lardizabal, № 15 20018, Donostia - San Sebastián SPAIN

Miramon Building

Parque Tecnológico de San Sebastián Paseo Mikeletegi, Nº 48 20009, Donostia - San Sebastián SPAIN

Telephone: (+34) 943 212800

Fax: (+34) 943 213076

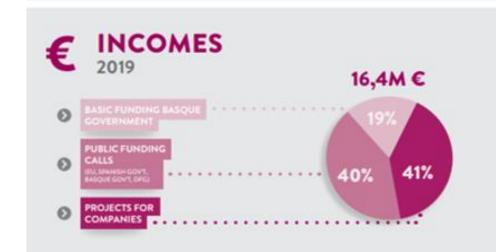
www.ceit.es

Ceit

FACTS AND FIGURES

THESES DEFENDED

477



BASQUE INDUSTRY 2014-2019

