

High-throughput laser communication without adaptive optics

Experimental demonstrations and roadmap

Jean-François Morizur, CEO

Cailabs: is a deeptech company in photonic With a core specialty around light shape manipulations

BY CAILABS

IAC - Conference - 2022-09-20

We are based in Rennes, in a brand new building

In the last 2 years, we have dedicated considerable resources to optical ground station projects

15 PhDs currently working on lasercom projects

... with a dedicated **Optical Ground Station**

A team scaling up with recruitments planned in **2022 & 2023**

and an in-house production line audited by B\$ companies

Laser communication

Overcome communication limitation

Radio satcom suffers from technical limitations

And laser communication is the only credible alternative

BY CAILABS

Lasercom overcomes RF limitations and enables

- Ultrafast up- and downlink (100Gbps+ !)
- An unlicensed communication spectrum
- Highly secure links (directional and nonjammable)

Essential for operational use cases:

- Latest generation Earth Observation satellites generate Tb of data per day
- Sovereign communication requires secure satcom links
- Telecom constellations rely on ultra-broadband feeder uplinks

Turbulence makes it difficult to couple into the required detector for high capacity links

Laser communication is competitive with RF at high throughput (> 10 Gbps) which requires small detectors

- 10x more data rate means 10x more sensitivity
- Small detectors feature less noise for higher sensitivity

To benefit from efficient telecommunication equipment, coupling inside single-mode fiber becomes compulsory

- Enabling coherent detection for > 10Gbps
- Unlocking the use of EDFAs to amplify the signal

100 Gbps 10 Gbps 1 Gbps

Detector size depending on throughput and turbulent beam

[1] Carrasco-Casado, A. & Mata-Calvo, R., Free-space optical links for space communication networks, 2020

We mitigate turbulence, but not in the "usual" way

The concept is packaged into TILBA-ATMO, a turnkey solution

BY CAILABS

To implement it, TILBA-ATMO leverages state-of-the-art technology

Multi-Plane Light Conversion

Integrated Photonics Chip

Beyond core turbulence mitigation, Cailabs provides up to the full ground-station

Results and goingforward

From link budget calculation to full OGS operation

Resource

Autonomous and peer-validated turbulence and link budget modelling

Turbulence simulation tools

Optical budget calculation

Simulated turbulent wavefront profil

Resource State-of-the-art dynamic turbulence optical bench

BY CAILABS

Up to three turbulence phase plates.

We can adjust :

- Speed → Greenwood frequency
- Distances →
 Scintillation index
- Input beam size →
 D/r0

Beam splitter

Resource Short distance link (200m)

Two telescopes facing each other, one emitting and one receiving the signal

Resource Medium distance link (1km)

Resource Proprietary Optical Ground Station and prototypes at Cailabs

Operational optical Ground station

Example of telescope – 80 cm

Example of telescope – 35 cm

Resource Partnerships : Example of tests at DLR (10 km)

Leveraging these resources enabled us to perform a series of validations – more details at www.cailabs.com

BY CAILABS

Coherent and high data-rate link

- 100 Gbps DQ-QPSK demonstration
- 50 Gbps NRZ demonstrated on recombining unit
- 10 Gbps DPSK

Telescope and optical ground station qualification

- Qualification of telescope from 20 cm to 80 cm
- LEO satellite tracking
- Optical sub-system qualification: mount, tracking, beacon, tip-tilt, modem,...

Ground-to-ground demonstration

- 200 m 10 Gbps link in Cailabs
- 1 km 10 Gbps link in Cailabs
- 10 km CW power link in partnership with the DLR

What to expect in the next 12 months?

Next campaign with partner on turbulence mitigation TILBA-ATMO – late 2022 and early 2023

Next version of turbulence mitigation TILBA-ATMO – early 2023

LEO-to-Ground communication link validation – early 2023

Delivery of automated and industrial ground station to clients – mid 2023

We are pushing an ambitious roadmap to support lasercom deployment

TILBA BY CAILABS 2019-2021 2022 2023 2024-2025 **Turbulence** mitigation Demonstrate broadband and First deliveries of client Industrializing of new onvalidation ground-to-ground field tests optical ground station board terminals Higher than RF data rate (> 10 Optical ground station pre-Ramp-up of optical ground Telecom sub-system tests and Gbps) and comparison with production (TILBA-ATMO) series for commercial use stations and new terminals alternative technologies (AO) ONERA cnes HE FREN CH AFROSBACE LA

Field tests DLR

cailabs

First optical terminals for on-

board applications (e.g. naval)

First in house optical ground

station and sat-to-ground

experiments

What do we need from the EPIC & ESA community?

We need always better PICs

- Low-loss
- Fast phase modulation
- Delivered on time, and within specs
- = > we run 1-2 dedicated runs per year

We need some specialty fibers / components

We need partners for relevant context requirements and to support demos

- Sat-ground on-going (French DoD, EU)
- Ship-Ship is just starting (French DoD, major OEM)
- Aircraft / Drone in discussion
- Others ? TBD