TESAT-STANDARD

OPTICAL COMMUNICATION TERMINALS IN SPACE 2022
Nils Höpcke

2022-09-14

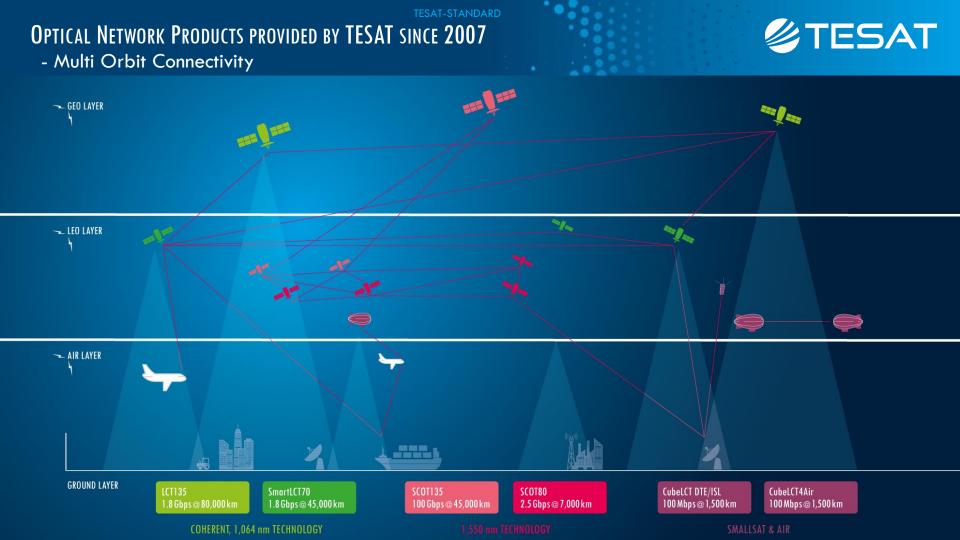
AGENDA

- » Introduction
 - » Advantages of Optical Inter-satellite Laser Communication
 - » Challenges of Optical Inter-satellite Laser Communication
 - » Laser Communication Application
 - » Laser Communication Missions
- » SCOT Scalable Optical Terminal
 - » Scalable and Modular Approach
 - » SCOT80 Key Facts
 - » SCOT80 Design Details
- » LCT135 and SmartLCT70
 - » LCT135
 - » SmartLCT70
- » Smallsat and DTE
 - » TOSIRIS
 - » CubeL
- » Summary

ADVANTAGES OF OPTICAL INTER-SATELLITE LASER COMMUNICATION

ADVANTAGES OF OPTICAL INTER-SATELLITE LASER COMMUNICATION

- » Reasons for Laser Communication
 - » Power efficient
 - » Secure communication
 - » Resilient against jamming
 - » High data rate support
 - » No frequency regulations
 - » Low data latency using GEO relay or LEO constellation


CHALLENGES OF OPTICAL INTER-SATELLITE LASER COMMUNICATION

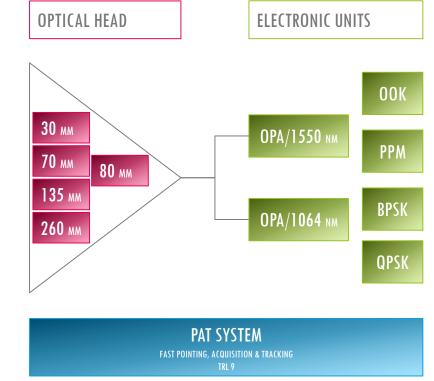
- » Challenges of Laser Communication
 - » Low beam divergence requires excellent beam pointing ~ µrad
 - » Dedicated Pointing Acquisition and Tracking (PAT) Algorithms
 - » Space environment
 - » Higher optical power than in terrestrial application

- Relative velocity ~ 40,000 Km/h
- Laser spot after 1000Km ~ 10m
- Pointing accuracy ~ µrads

LASER COMMUNICATION IN ORBIT MISSIONS- MORE THAN 500,000 OPERATIONAL HOURS

SCALABLE AND MODULAR APPROACH FOR CUSTOMIZED SOLUTIONS

Combination of building blocks to tailor the LCT to the mission



PERFORMANCE RANGE

Data Rate versus Distance

0.25 Gbps to +100 Gbps over

100 km to 80,000 km

ENGINEERING SKILLS

IN ORBIT LCT
COMISSIONING &
LIFETIME SERVICES

SYSTEM ENGINEERING & INTEGRATION

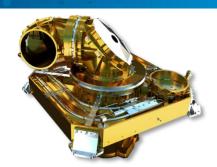
FLIGHT SOFTWARE
ADAPTION &
OPTIMIZATION
Software Defined

SCOT80 Scalable Optical Terminal provides broadband connectivity in LEO constellations

	SCOT80	
Optical Head Aperture	80 mm	
Wavelength	1550 nm	
Modulation	OOK	
Data Rate	200 Mbps SDA Tranch 0	
	2.5 Gbps SDA Tranch 1	
	10 Gbps at 7000 km for commercial broadband missions	
	100 Gbps (Transceiver Qualification)	
Coding	LPC, RS, LDPC (re-programmable in-orbit)	
Ranging	1-way, 2-way ranging	
Data Interface	Ethernet	
TM/TC Interface	Ethernet	
Max OAU Power	2W, 4W, 5W	
Range	250 km – 10,000 km	
Gimbal Range	Azimuth $\pm 160^{\circ}$, Elevation $\pm 55^{\circ}$	
LOS Velocity	5°/s tracking & slew	
Mass	12.5kg incl. harness	
SDA Std. Compliant	2.1.2 (T0), 3.0 (T1)	

SCOT80 - DESIGN DETAILS

- » Technology Key Fact
 - » EU
 - » EDFA
 - » Re-programmable FPGA for optical channel FEC
 - » Re-programmable FPGA for Pointing Acquisition and Tracking Algorithms
 - » OH
 - » 4-mirror athermal off-axis telescope
 - » Voice coil Fine Steering Mechanism (FSM)
 - » InGaAs Tracking and Acquisition Sensor (ATS)
 - » Integrated Transceiver Modules
 - » Wavelength switch (WSX) based on waveguide mechanism
- » New Space Parts Approach
 - » Parts Agency with 60 EEE Experts
 - » Industrial grade parts
 - » Not worse quality as Class A parts, but often better
 - » Comply to industry standards
 - » Quality is individually verified (e.g. by manufacturer reliability data, lot testing, ...)
 - » Lead free process (soldering/cleaning/coating)

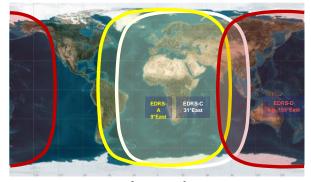


DATA RELAY TRL9 — GEO LCT 135

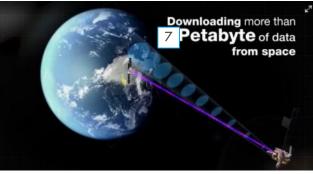
- » Tesat LCT in Space with Coherent, Space Qualified 1064 nm Laser Source, using Homodyne BPSK Modulation
- » Results in the Most Efficient Design for Long Range, High Data Rate Transmissions with Resiliency to Sunlight and Jamming
- » Perfect Media for Quantum Key Distribution
- » 16 Flight Models Delivered or in Production

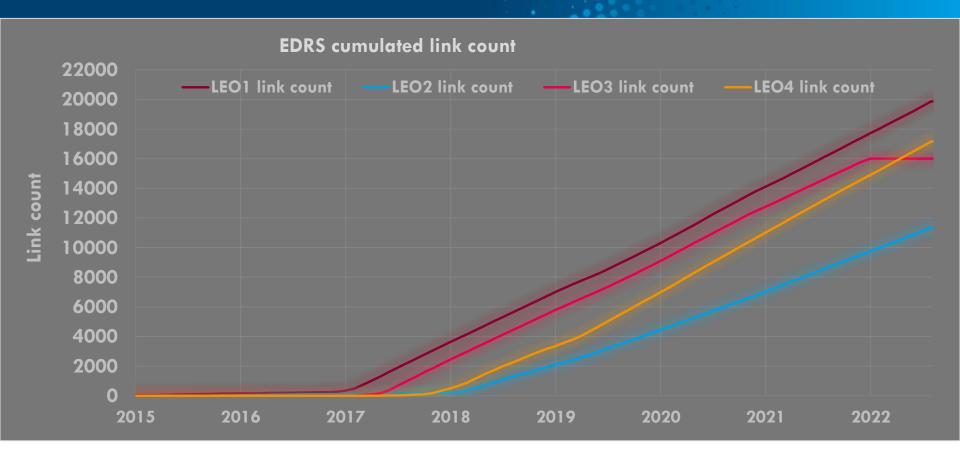
» Design will Support GEO - GEO Backbone up to 80,000 km at 1.8 Gbps

Long Range Version LEO2GEO and GEO2GEO


Range	45,000 km / 80,000 km
Data Rate	1.8 Gbps
Transmit Power	2.2 W
Telescope Diam.	135 mm
Mass	ca. 53 kg
Power Consumption	ca. 150 W max.
Volume	ca. 0.6 x 0.6 x 0.7 m

LONG RANGE MISSIONS UP TO 80,000 KM WITH GEO LCT135...



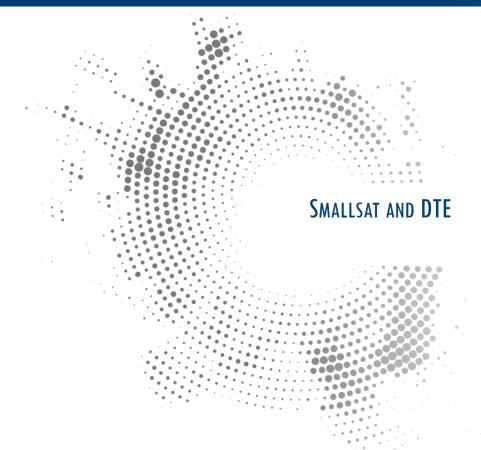


...each month 1,000 optical LEO to GEO links total amount today 68,000 links performed

EDRS ACCUMULATED LINKS

DATA RELAY - LEO SMART 70 - THE USER TERMINAL FOR COPERNICUS

- » From 135 mm to **70 mm Aperture**, **1,8 Gbps@45.000km**
- » Reduction of SWAP and Price compared to the GEO LCT135
- » Modular Approach with separate Communication Unit, Optical Unit and Coarse Pointer Assembly (CPA, if needed)



- » Homodyne BPSK modulation at 1064 nm
- » Resiliency to jamming and sun outages
- » First flight on Airbus "Pleiades Neo" Program. Delivery in 2021
- » ULTRA Precision Timing and Ranging COMPASSO
 - » DLR-Galileo Competence Center DLR-IQT/IKN, MENLO, TESAT
 - » Accomodation on ArGUS / Bartolomeo
 - » Future use in GNSS

Tesat Direct-to-Earth (DTE) Data Transmission LCT:

» Downlink Data Rate: 10 Gbps

» Dimensions: $28 \times 20 \times 15 \text{ cm}^3$

» Mass: 9 kg

» Power Communication: 80 W

» Design Lifetime in Orbit: 5 Years

» Standard Compliance: CCSDS

Features:

- » OSIRIS (IKN) Prototype Based on TRL8 Technologies In Orbit on the BIROS Satellite since 2017
- » TOSIRIS will Include Coarse Pointing Mechanism, Mass Memory Supporting the 10 Gbps Downlink Rate, with a Low Data Rate SC IF and Terminal Controller Inside
- » 1 Mbps Optical Uplink Channel from Ground to SC for TM/TC and Handshake
- » First commercial Mission on Titania

THE CUBEL

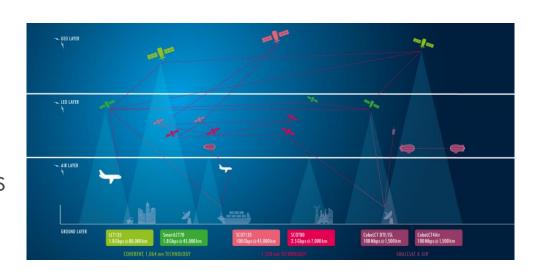
- » CubeLCT is an optical Transmitter for optical data downlinks from LEO
- » Technology Cooperation with DLR-IKN, Tesat as the industrial partner for Cube manufacturing


» Cubel: 400g / 8W @ 100 Mbps

» CubeL+: Evolution to 1Gbps and bi-directional inter satellite links in 2023

» TRL9
In-orbit verification in PIXL-1 Mission

© GOMSPACE


- 21 -

SUMMARY

Laser Communication at TESAT

- » Laser communication for ISL and SGL
- » Heritage space applications like LEO/ GEO data relay and scientific applications
- » New / next space applications in a modular product approach scalable form 0.05Gbps +100Gbps
- » More application to come! PNT, QKD, Science
- » Solution for different applications
 - » Long Range, GEO Relay
 - » LEO node for GEO Relay
 - » DTE
 - » LEO Constellations
 - » Ultra Precision Timing and Ranging, GNSS
 - » QKD

Nils Höpcke +49 7191 930-2778 +49 170 2231017 Nils.Hoepcke@tesat.de Tesat-Spacecom GmbH & Co. KG Gerberstraße 49

71522 Backnang www.tesat.de

11/09/22