
Xblue

Industrial Quantum Gravity Sensors

Vincent Ménoret – iXblue Quantum Sensors vincent.menoret@ixblue.com

iXblue: a wide expertise in photonics for quantum technologies

From components to instruments

Quantum Quantum Quantum Quantum Communication **Simulation** Sensing Computing ILS laser series Intelligent Laser Systems **Systems USML** laser series *Ultra-stable Master Lasers* **Sub-systems** iMOB series and Fiber Lasers Components Fibers, modulation solutions

iXblue Quantum Sensors

Quantum sensors and laser systems

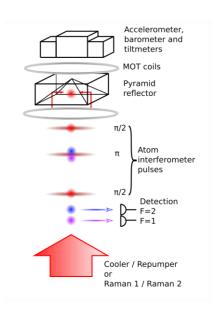
- Muquans created in 2011, Quantum Sensors division of iXblue since 2021
- Pioneer in the field of industrial quantum systems
- Industry-grade systems in operation all around the world

 Cold atom gravity meters • ($\Delta g/g \approx 10^{-9}$)

 Cold atom atomic clock • $(\Delta f/f \approx 10^{-15})$

• $(\Delta f/f \approx 10^{-20})$

 Laser and subsystem solutions • $(\Delta \lambda/\lambda \approx 10^{-10})$


Field measurements with the Absolute Quantum Gravimeter (AQG)

The Absolute Quantum Gravimeter

Quantum gravity measurements on the field

- 2 key choices
 - Pyramid reflector (single beam)
 - Frequency-doubled telecom laser
- Fully integrated
 - Home-made electronics, software, etc
 - Integrated monitoring and supervision
 - Robust and compact design
- User-friendly
 - Easy to install and operate
 - Intuitive software
 - Remote operation
- High-performance
 - Continuous absolute gravity measurements
 - Resolution 1 μ Gal = 10 nm.s⁻² (~10⁻⁹ g)

Application to volcano monitoring

NEWTON-g project

D. Carbone et al., Front. Earth Sci. 8:573396 (2020)

- AQG installed on Mt Etna in July 2020
 - 2800 m elevation
 - 2.7 km from summit craters
- Hard conditions
 - Volcanic tremor / eruptions
 - Temperature changes
 - Corrosive and dusty atmosphere
 - Difficult access (impossible in winter)
 - Unstable off-grid power supply
 - 6 months with no power in winter!
- Demonstration of the relevance of quantum technology
 - High-quality data (estimation magma dynamics)
 - Robust instrument

Geophysical Research Letters

RESEARCH LETTER 10.1029/2022GL097814 **Detecting Volcano-Related Underground Mass Changes With a Ouantum Gravimeter**

Key Points:

 We present the world's first time series acquired with an absolute quantum gravimeter in the summit crater zone of an active volcano.

Despite the unfavorable ambient

Laura Antoni-Micollier¹, Daniele Carbone², Vincent Ménoret¹, Jean Lautier-Gaud¹, Thomas King², Filippo Greco², Alfio Messina², Danilo Contrafatto², and Bruno Desruelle¹

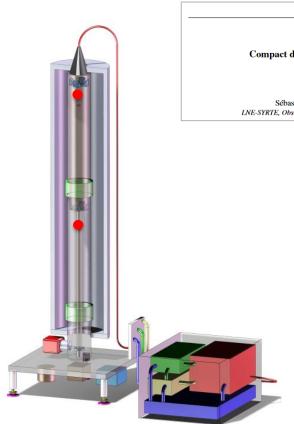
¹iXblue, Institut d'Optique d'Aquitaine, Talence, France, ²Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania Osservatorio Etneo, Catania, Italy

Quantum gravity sensing

A mature technology

- Field-proven in various conditions
 - Volcano monitoring
 - Hydrology
 - Antarctica (geodesy)

- Advantages compared to classical solutions
 - Continuous absolute gravity measurements
 - High quality data
 - Easy to use



Coming up next: Differential Quantum Gravimeter (DQG)

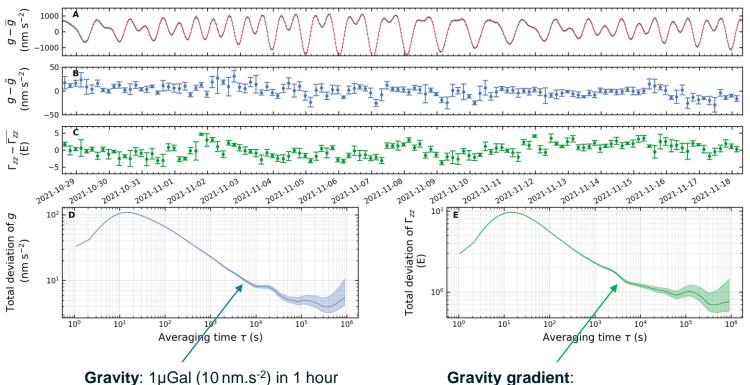
DQG: gravimeter + gradiometer in a single package

PHYSICAL REVIEW A 105, 022801 (2022)

Compact differential gravimeter at the quantum projection-noise limit

Camille Janvier , Vincent Ménoret , and Bruno Desruelle iXblue Quantum Sensors, F-33400 Talence, France

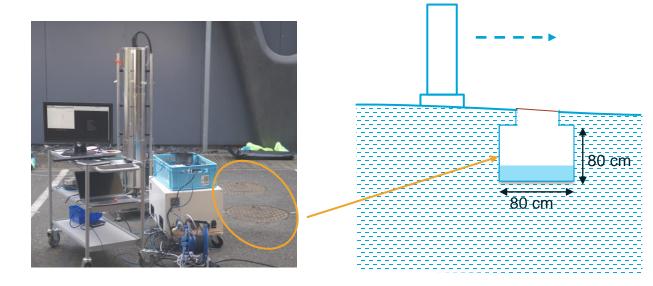
Sébastien Merlet , Arnaud Landragin , and Franck Pereira dos Santos LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, F-75014 Paris, France


Gravimeter
$$\bar{g} = \frac{g_1 + g_2}{2}$$

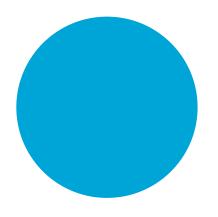
Gradiometer $\Gamma_{zz} = \frac{g_1 - g_2}{1 - g_2}$

Quantum Projection Noise limited

Continuous measurements


Gravity gradient:

- 2 E (2 nm.s⁻²/m) in 30 minutes
- Resolution ~ 0.1 E (100 pm.s⁻²/m)


Gravity surveys

- Survey performed outdoors
- Detection of small cavities at shallow depths
- 15 20 minutes per point
- Clear gradient signature
 - Total amplitude ~ 50 E
 - Resolution ~ 5 E
- Applications
 - Civil engineering
 - Resource monitoring
 - Archeology

 A unique device : combined gravity and gradient measurements with state of the art performance: 1 μGal / 1 E

Perspectives

And now?

- Further integration and improvements of Absolute Quantum Gravimeter
- Field Differential Quantum Gravimeter
 - For autonomous gravity mapping
 - HE project about to start
- Onboard gravimetry
 - Project with ONERA for the French Oceanographic agency (SHOM)
- Next generation quantum sensors
 - o iXatom joint lab
 - Multi-axes sensors
 - Hybrid classical/quantum sensors

Xblue