

Prof Miles Padgett FRS DEVELOPING QUANTUM IMAGING TECHNOLOGIES

NPLO

C\2

ROVE

dstl

covesion

IDQ

SQUARED

New Products in Collaboration with our Partners

How can Quantum Improve Imaging?

Quantum Technology Cameras Photon Detection

Gated intensified Cameras

- QE ≈ 10%
- $\Delta t ≈ 1nS$
- False +ve ≈0.001

Electron Multiplying CCD

- QE ≈ 80%
- Video frame rate
- False +ve ≈0.01

Quantum Technology Cameras Photon Counting

CMOS camera

- Counts the number of photons in each pixel!

Quantum Technology Cameras Photon Timing

PHOTON FORCE

HORIBA Scientific

SPAD Cameras

- Measures the arrival time of the first photon at each pixel

Fluorescence lifetime imaging

Pose estimation from low res data

Dr Jonathan Leach

Input from vI53I5 sensor

(a) Histogram

(b) Highest return

(c) Depth

(d) RGB

Our predictions

(g) Output of Pixels2Pose

Reference from Kinect camera

An endoscope the width of a human hair

Prof. Miles Padgett and Dr Simon Mekhail

1 x 355 nm UV photon in

(Quantum) Parametric Downconversion One photon in two out! 2 x 710 nm infrared photons out

Taking a closer look

Entangled Photons

Correlated in their positions Anti-correlated in their transverse momenta

These two image patterns are the ≈same

Quantum Source

Prof Jonathan Matthews

A second-order correlation measurement [g⁽²⁾(τ)] between signal and idler photons. The peak at τ = 0 confirms the generation of photon pairs. Data is taken at 35 mW.

How can correlation be used?

- Correlation in:
 - Time
 - Energy
 - Position
 - Momentum
 - Polarisation

Correlation in Time

Free running Image

Gated Image

Correlation in Position

Beyond Correlation: Imaging with Undetected Photons

Imaging with undetected photons (illuminate sample in the infra-red but record the image in the visible)

- Zeilinger and co-workers (2014)
- Ramelow and co-workers (2020)
- Phillips and co-workers (2022)
- Fraunhofer (here in the hall) (inc. FTIR!±)

Imperial College London

Imaging without detection

Prof. Chris Phillips and Dr Alex Clark

A compact nonlinear interferometer for infrared imaging while only detecting visible light with 532 nm pump laser, 700 - 820 nm signal photons and 1.5 - 2.5 μm idler photons.

IR Phase

Summary

- Quantum technology Cameras
 - Count and time individual photons
- Quantum (correlated) light sources
 - Correlations between individual photons (≈ perfect reference)
- Beyond correlations
 - Illuminating with undetected photon