



# Quantum sensing for gravity cartography

Ben Stray Research Fellow, Atom Interferometry group

B.J.Stray@bham.ac.uk



### What's beneath your feet?

- We know surprisingly little about the underground infrastructure.
- Detection of underground infrastructure and hazards, most tech limited to top ~2 m.
- Can improve interventions and maintenance, reducing cost and impact on productivity.



### What's beneath your feet?

- Gravity exists between any two masses –
  potential for deeper detection of targets.
- Gravity is not attenuated deeper pipes such as water, or leak-voids (sinkholes).
- Vibration can make gravity surveying impractical.



### What can gravity be used for?



### Quantum sensing of gravity

Atom interferometry – interchange roles of light and matter.





Atom interferometry fringes at UoB, 2015

Phase difference:

$$\emptyset_{\mathbf{g}} = k_{\text{eff}} g T^2$$

## Quantum sensing of gravity gradients

Simultaneously measure on two clouds with a common 'laser ruler'.



## Improving field readiness

- Key technology choices:
  - Telecom fibre laser systems; robust preparation of atom clouds



**UoB** telecom laser for atom interferometry



109 rubidium atoms in a prism MOT at UoB

## Hourglass gravity gradiometer

 Robust concept, with cylindrical form factor

 Stable and can operate in the field for months without realignment



### Field trials

Assessed performance and robustness in a range of trials





#### Performance in field environments



20 E is approximately the gradient due to a person near the sensor

### Survey to detect multi-utility tunnel

Tunnel (2 m by 2 m) under a road between workshop and music building



Tunnel centre localised to:  $\pm 0.19$  m, horizontal; -0.59/+2.3 m, vertical

### Comparing performance with applications

 Current statistical uncertainty exceeds classical sensors by ~1.5-4x and performance is relevant to a range of targets



Contours in E  $1 E = 10^{-9} s^{-2}$ 

## **Gravity Cartography**

- Removing vibration could enable rapid scanning for:
  - Road inspection
  - Rail infrastructure
  - Navigation
  - Security
  - Resource monitoring



#### Latest field trial

 Benchmarking in field environments: QT device operable under a range of strong applied vibration environments without issue





### Next steps – alternative navigation

□ Reference position versus changes in local gravity gradient - robust against spoofing/jamming/loss of signals, passive





### Next steps – border security

□ Rapid measurement rate gradiometers for scanning at borders – reduced need to stop vehicles, improved flagging of anomalies



#### Simulations of mass anomalies inside freight





### Next steps – compact sensors

Person-portable and moving platform devices underway





Current prototype specifications:

100 L, 17 kg, 125 W

Exploitation (new company):

#### Delta-g limited









### Next steps – high sensitivity

QT for fundamental physics: AION – towards sensor for mid-band

gravitational wave and dark matter investigation

UoB: Extreme momentum transfer (> $10^4\hbar$ k)







# **UoB** Gravity Cartography team



School of Physics and Astronomy School of Engineering









Funding:







### **UoB Atom Interferometry**





Thank you for listening







#### Funding:











### Quantum sensing of gravity

Similar to optical interferometry

