

Medical Applications of Integrated Photonics – MedPhab Pilot Line Use Cases

- **1 General Information**
- 2 Technological offer
- 3 Success stories
- **4** Open calls information
- 5 Summary

- **1 General Information**
- 2 Technological offer
- 3 Success stories
- 4 Open calls information
- 5 Summary

Dedicated to Efficiency

MedPhab Photonic Medical Devices

First European Photonics Pilot Line dedicated to medical devices

Benefits

- Enable cost effective development from protoype devices to manufacturing
- Several photonics and supportive technologies through a single entry-point
- Early adoption of new photonics technologies
- Develop and support the entire supply chain
- Provide unique training

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Project Partners

MedPhab Photonic Medical Devices

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Single entry point across the whole development chain

MedPhab Photonic Medical Devices

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

PHOTONICS PUBLIC PRIVATE PART

Innovation Maturity – Product vs. Process

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

PHOTONICS²

Applications

Hospital Use

Home Care Diagnostics Services

Medical Professionals Fiber optic modules

Citizens jointly with professionals

Miniaturized modules for wearables

Professionals in laboratories

Equipment for Chemical

Diagnostics

Disposable microfluidic cartridges Reader units

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

- 1 General Information
- 2 Technological offer
- 3 Success stories
- 4 Open calls information
- 5 Summary

MedPhab

Photonic Medical Devices

Technologies Overview

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Development support

MedPhab Photonic Medical Devices

Optical / elements simulations Thermal simulations Mechanical simulations Microfluidic simulations

Functional design / Interface design PCB design / Module design Microfluidics / Mechanical design Free-space optics (systems) PICs / Optical elements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Analyze, measure, characterize (e.g.) microfluidics Optical, electronics, mechanics Realization & prototyping, new product introduction Supply chain management & sourcing

From proof-of-concept to product

MedPhab Photonic Medical Devices

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

PHOTONICS²¹

Use cases and demonstrators

Development of Multiplex µELISA for Point Of Care Testing

- based on patented GENSPEED platform technology

Product-areas:

- -GENSPEED as OEM platform technology for customers
- -Chair-side tests for fast detection of key pathogens in
- periodontitis at the dentist's office
- -Multiplex Immunoassay Test-Portfolio for POC application in pharmacies/doctor's offices
- -Rapid tests for detection of nosocomial infections

GENSPEED BIOTECH

Use cases and demonstrators

part 1

Flex2Rigid MEMS at 6" wafer node, volume manufacturing

Characteristics:

- Optical alignment / connection to fiber
- Passive fibre alignment with accuracy of MEMS process
- Electrical connection between Si parts
- Foldable
- Direct electrical connection to substrate

Fiber aligned to VCSEL and bonded

4-fold alignment and integration

Cut from wafer pre folded component

VCSEL soldered onto part 1

Part 2 folded and bonded to part 1

PHILIPS

part 2

400 um

40 un

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Heart rate skin patch sensor

Description:

• Skin-conformable, non-invasive PPG sensor to track your heartbeat during the day.

VTT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

- 1 General Information
- 2 Technological offer
- 3 Success stories
- 4 Open calls information
- 5 Summary

MedPhab

Objective: To demonstrate on-chip modulation for multiplexing SiPh biosensor arrays

MedPhab's role: Involvement in designing and characterization of SiPh chips

Each sensor can be independently functionalized to be selectively sensitive to a particular analyte.

30-sensor matrix, all individually selectable

FemtoRays Technologie

PHOTONICS PUBLIC PRIVATE PARTNERSHI

unec

MedPhab

Scalable fabrication of microfluidic well plates

Technological challenges

- Transition from hand-molded microfluidic chips to massproducible well plate structures
- Provide customer-specific micromanipulation tools for high-throughput drug screening
- Comply with the industrial standards

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

MedPhab

Scalable fabrication of microfluidic well plates

Project Goals

- Develop a roll-to-roll procedure to enable the automatic fabrication and bonding of a multi-layer system within a commercial well-plate structure
- Implement selected biocompatible materials that fulfill the specific requirements of the customer's cell cultures
- Enable specific, accurate and fast isolation of single cell models in a completely automatic manner

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

MedPhab

- 1 General Information
- 2 Technological offer
- 3 Success stories
- **4** Open calls information
- 5 Summary

MedPhab

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

			(and)	(and/or)
Type of company		Staff headcount	Turnover	Balance sheet total
Mid-cap		< 3,000	N.A.	N.A.
	Medium-sized	< 250	≤€50 M	≤€ 43 M
SME	Small	< 50	≤€10 M	≤€10 M
	Micro	< 10	≤€2 M	≤€2 M

The Maximum EU-contribution for a Demo case is up to 125 k€:

EU-contribution	Support for MedPhab services (via EU-demo case budget)	YOUR in-cash contribution
SME (EU-based)	75%	25%
Large company (EU-based)	50%	50%

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Open calls: How to apply

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

Open calls: How to apply

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871345. The presented results reflects only the author's view. The EU is not responsible for any use that may be made of the information it contains. www.photonics21.org

- 1 General Information
- 2 Technological offer
- 3 Success stories
- 4 Open calls information
- 5 Summary

- MedPhab serves as Europe's first Pilot Line dedicated to manufacturing, testing, validation and up-scaling of new photonics technologies for medical diagnostics.
- The purpose of MedPhab pilot production line is to accelerate the commercialisation of diagnostic devices and instruments for treatment based on photonics, and to reduce the R&D costs.
- MedPhab is launching an Open Call for external companies developing medical products. The objective of the Open Call is to provide technology development services for the companies that are adopting advanced photonics technologies in the medical diagnostics solutions.

