

MicroLED Display Integration on 300mm Advanced CMOS Platform

Soeren Steudel, CTO

COMPANY OVERVIEW

Company:

Vertical:

Product:

Business model:

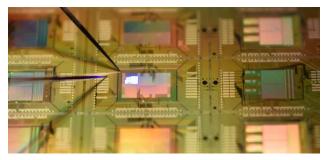
Technology IP:

USP:

Financials:

Investment:

B2B Fabless Hardware Component Sales


Spin-out of IMEC in 2019

Size, Power Efficiency, Image Quality

Pre-Revenue

>10MEUR

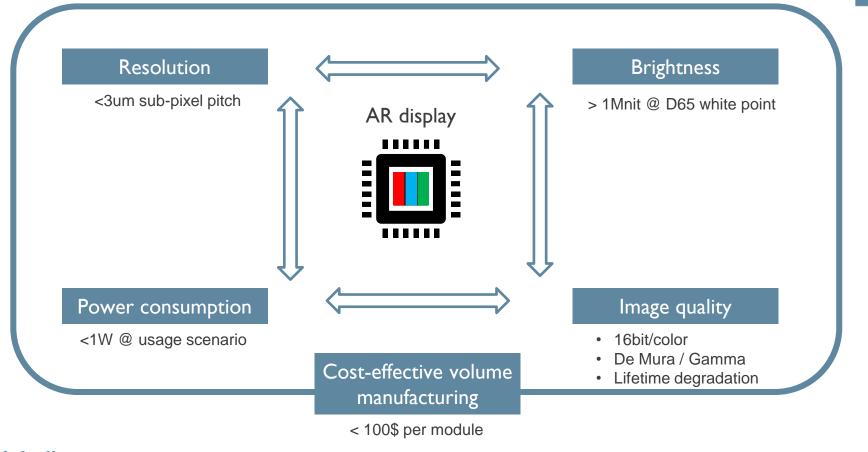
micledi

MARKET DEVELOPMENT

Today: Large, Heavy, Expensive, Poor Image

<u>Tomorrow</u>: Compact, Attractive, Low-cost, Low Power, Beautiful Image

The dream



The big elephant in the room. How to solve:

- Accommodation and Convergence
- Occlusion

micledi

TECHNICAL PROBLEM STATEMENT

micledi

EPIC MEETING 7/8 SEPTEMBER 2022

U

EPIC MEETING 7/8 SEPTEMBER 2022

Glo

5


Companies with own known development efforts:

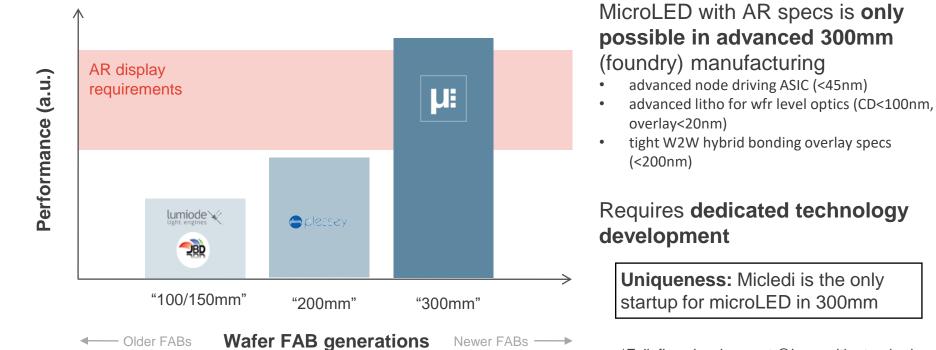
IBD

Plessey

Aledia **Compound Photonics** EpiPix META Lumiode Lumens MojoVision NS Nanotech Plessey Ostendo Raxium Raysolve JBD Sharp VueReal ..many more

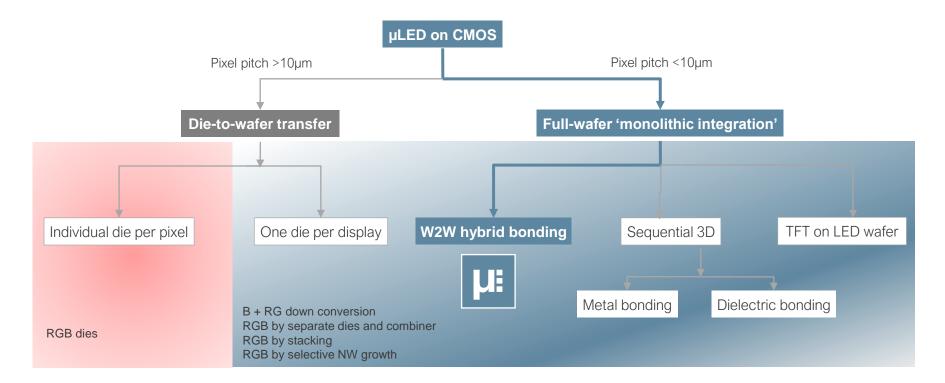
micledi

)stendo


STATE-OF-THE-ART AR/CMOS µLED display (excl. µLED flat panel displays)

CMOS integration		e comp	etition					
Color creation	-							
Wafer size LED [mm]	Large investment 200							
Wafer size CMOS [mm]	200 Very different technolo							
Wafer level optics solution	N	0.	No					
Manufactuability / yield / cost			egration (5)			
Issues with image quality	RGB LED (8x routes)							
Issues with brightness				,				
Issues with resolution			4x routes)					
	• Company3	Driving ar	nd comper	nsation (x	x routes)			
CMOS integration								
Color creation								
Wafer size LED [mm]								
Wafer size CMOS [mm]								

UNIQUENESS OF MICLEDI TECHNOLOGY LEVERAGING MOST ADVANCED EQUIPMENT IN SEMI INDUSTRY

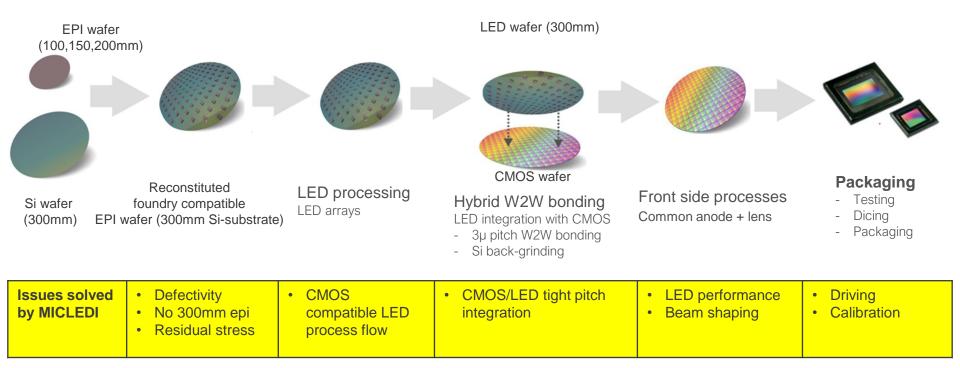


*Full flow development @imec with standard high-throughput automatic production tools

INTEGRATION CHALLENGES MICRO-LED ON CMOS

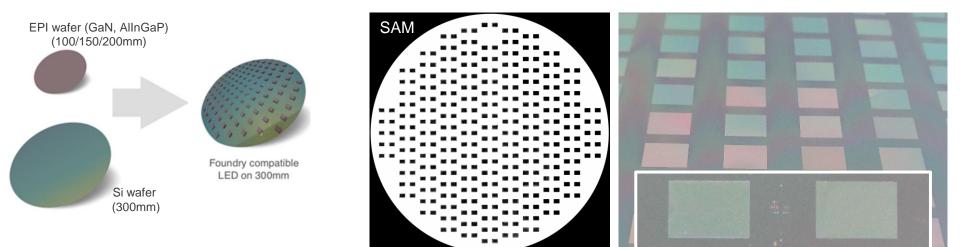
RGB COLOR VS SPECS FOR AR WAVEGUIDE OPTICS

		µ:		
	RGB pixel level die assembly	RBG dies and combiner optics	RG down conversion	Selective RGB templated growth (e.g., NW)
RGB color	pixel-by-pixel row-by-row	die-by-die	pixel-by-pixel	pixel-by-pixel
Pixel density				
Brightness				
Yield				
System cost				
Display size				
Image quality				
Lifetime				


Alternative RGB routes explored by different companies

- Stacked RGB QW (W2W bonding)
- Stacked RGB QW (epi overgrowth/Multi-contact)
- RGB etched nanopillar

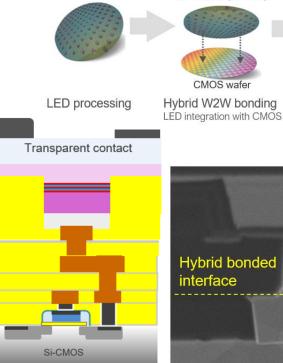
- 1. The display size is limited by the pixel density. Added constraint is CMOS driver size.
- 2. RGB die-by-die and RGB pixel-by-pixel have the same size constraints.
- 3. CMOS power consumption scales with number of pixel and image quality.
- 4. LED power consumption scales with emissive area.

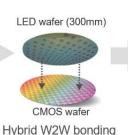

LED PROCESS FLOW FOR W2W BONDING HIGH LEVEL OVERVIEW

micledi 'unec

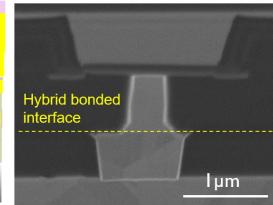
UH

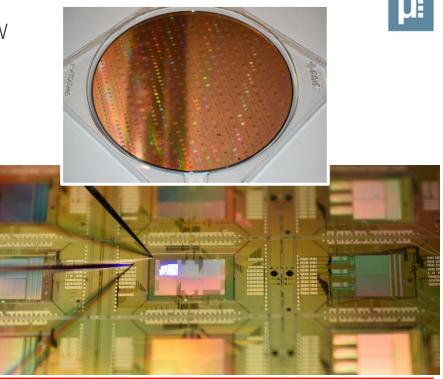
300MM EPI SOLUTION EPI WAFER RECONSTITUTION


- Planarized 300mm reconstituted epi-wafer on standard Si-wafer
- Die attach yield up to 100%
- Pre-selection of epi dies for low-defectivity & optical properties possible
- Wafer bow < 20µm and no residual stress
- n/QW/p LED epi layer with buffer removal < 1.5µm thickness
- Planarization verified by W2W bonding

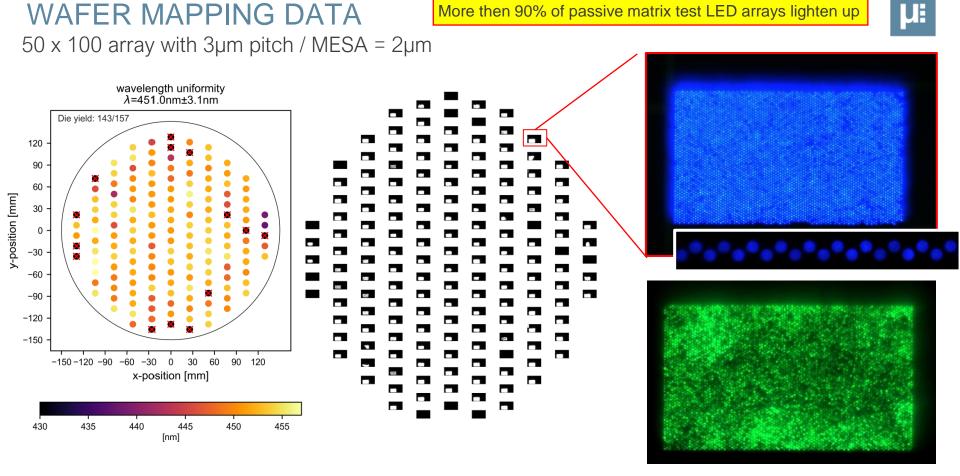

micledi unec

UH


DISPLAY INTEGRATION

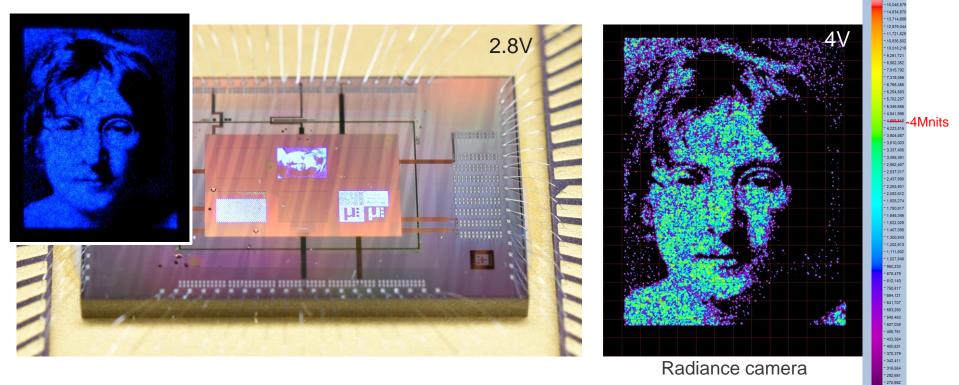

300MM CMOS FAB COMPATIBLE PROCESS FLOW

Front side processes



W2W hybrid bonding of CMOS with GaN LED

- Pixel pitch 3µm hexagon = 9150ppi
- overlay variation < 200nm across 300mm wafer
- No active CMOS in pathfinder lot; only passive matrix

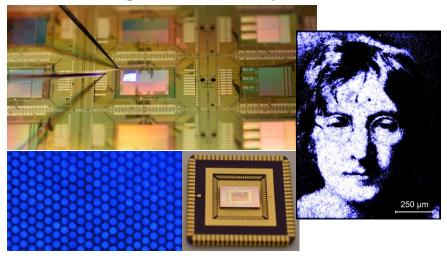

micledi 'unec

DISPLAY TEST STRUCTURES

- >1Mnits@ 4V
- fill facture (up to 63%)

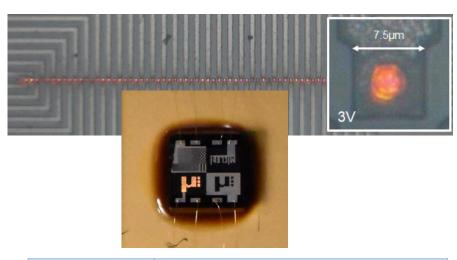
480X320 PASSIVE MATRIX SUB-ARRAYS WITH 3UM PITCH

micledi


- 250,122

UF

Cd/m² - 20,308,534 - 18,774,997 - 17,357,259


ALL COLOR FIRST PRODUCT GENERATION: GAN ON SI FOR RGB

Devices for integration flow development

Design rule	MESA = 0.5-2.5µm, Pitch = 3µm hexagon, window=100%
Process flow	300mm GaN RC with W2W hybrid bonding;
Layout	passive matrix
Common potential	Anode
Outcoupling	Top emission; backside mirror + DBR; aperture =63%;

Devices for material and passivation characterization

Design rule	MESA = 3μ m, Pitch = 6μ m square, window= 1.3μ m
Process flow	200mm GaN on Si ;
Layout	passive matrix
Common potential	Cathode
Outcoupling	Top emission; no backside mirror; aperture < 3.7%;

micledi

- Micledi has developed a solution to integrate tight pitched (<3um) compound semiconductor with advanced 300mm Si-CMOS node for microLED arrays
- Proven process flow for passive 3µm pitch microLED array on 300mm full-automatic manufacturing tools (demo sample blue/green GaN LED available; blue GaN LED with wafer level optics Q3/2022; red GaN processing started)
- 300mm Foundry transfer started

- This work was done in collaboration between MICLEDI and imec. We would like to acknowledge 3D and SAT department of imec, Imec 300mm pilot line and MICLEDI team Leuven
- Authors would like to acknowledge VLAIO O&O funding "MICLEDI"

