

Silicon photonics Emerging applications From sensing to Al

Eleonore Hardy

Business developer – Silicon Photonics

World-class facilities

for your future business needs

Process Flow

300		
mm	1	NW GAA / BEYOND CMOS
200 (300 mm)	2	EMBEDDED MEMORIES
(200) (300) mm (300)	3	RF (active and passive devices)
(200) (300 mm) (300 mm)	4	Si PHOTONICS
(200) (300 mm) (300 mm)	5	µLED DISPLAY
300 mm	6	IMAGERS
(200 mm)	7	MEMS
200 300 mm	8	POWER (Si, GaN, SiC)
200 300 mm	9	3D
(200) (300 mm) (300 mm)	10	SUBSTRATES
(200 mm)	11	II-VI and III-V

SILICON PHOTONICS

leti

> The technological solution spreading from communication to new markets

CMOS-compatible photonics

- A must-have for scalability
- > Enabling increased circuit complexity
- Giving a path to cost reduction

Novel computing

Modified from Frank Vollmer & Stephen Arnold, Nature methods 5 (2008), 591-596

Today's techniques for the identification and quantification of markers (pathogens, odors, chemicals...) requires heavy lab procedures.

Tomorrow we need to:

- Standardize analyses and classification
- Make the detection faster, cheaper, closer to the user
- Make a sensor usable by anyone, anytime, anywhere

CEA-Leti's value proposition

- Design and implement a compact sensor
- Combine photonics readout, µfluidics and surface functionalization
 - > Selectivity and higher performance
 - > Portability
- Use existing technology blocks

SENSING

> Portable sensor for fast detection

SiN Based MZI Sensor

Each measured MZI is spotted with biomolecules specific to the different markers.

The presence of the marker modulate the output of the PIC.

- Limit of detection in the 10⁻⁷ RIU range
- ➢ Fast readout up to 200 Hz
- Low-cost photonic passive dies

- Low-cost laser and CMOS imager
- Multiplexing with up to 64 MZI
- Works for both gas and liquids

SteerLight Chip-scale Si-photonics FMCW LiDAR

High-volume scaling Targeted cost 100's \$

Manufacturing in std semiconductor fabs

Highly compact

Target volume < 100 cm³</th>On-chip LiDAR system with Si Photonics

Highly robust

High immunity to sunlight & other LiDARs

Highly reliable

Targeted duration > 10 years *No moving part & on-chip calibration*

3D vision for safer & smarter mobility

High performance Targeted range 200 m Coherent detection in mid-infrared

200 times less energy

than Google TPU

Neuromorphic photonics can offer sub-nanosecond latencies, high-bandwidth & low energies

- > CMOS-compatible platform
- > 12" wafer process

leti SILICON PHOTONICS FOR A SUSTAINABLE AI

> III-V on Si spiking laser source

Ceatech

Q-switched lasers

 > High wall plug efficiency targeting 100fJ/pulse for 10ps pulses
> Scalable heterogeneous integration

12" integration process

EVERYBODY IS LOOKING FOR THE IDEAL MODULATOR

> CEA-Leti is exploring several paths with new materials

BTO on Si

LNOI for Si or SiN

Silicon Organic Hybrid

A wide range of novel components for silicon photonics.

Si & SiN photonics

CMOS-compatible platform

With heterogeneous integration featuring novel compact and low-power devices

For emerging applications