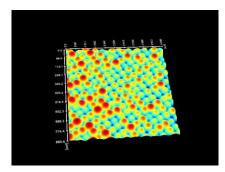
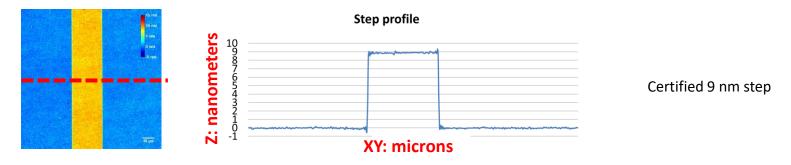
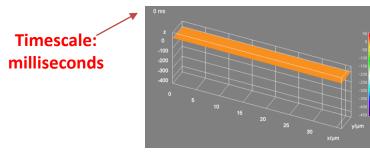
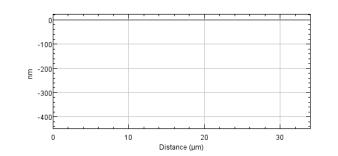

On-Flight, In-Line, and In-Situ during Manufacturing Process Micro-Optic Characterization by Digital Holography Microscopy (DHM[®])


Yves Emery, CEO Lyncée Tec SA, Switzerland



EVIC European Photonics Industry Consortium 11-12 May 2022, Karlsruhe, Germany EPIC Meeting on Advanced Microoptics: Simulation, Fabrication & Characterization at Nanoscribe

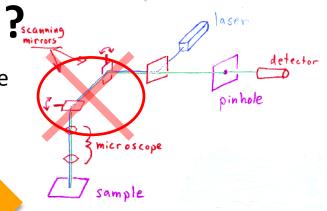



What is a DHM[®] ?

• a 3D optical profilometer with <u>interferometric resolution</u>...

• ... enabling <u>time-resolved</u> measurements, i.e. 4D

Graphene membrane deformation by pressure


Digital Holographic Microscopy

What is different with a DHM[®] ?....

- 3D topography is measured "instantaneously" at camera rate
 - DHM[®] does not necessitate a scanning mechanism for acquiring the 3D information over the full field of view

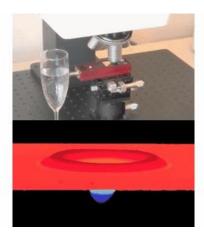
lyncée tec "HM®

No blur during exposure sensitive measurements
Acquisition time, down to 10 μs

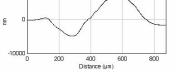
4D: Time-resolved 3D measurements (real-time)

Acquisition rate up to 100'000 fps (full field)

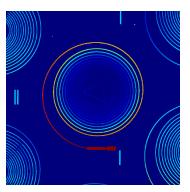
Full field of view (Megapixels) MEMS characterization


• Stroboscopic synchronization up to 25MHz

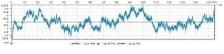
OPENS UNIQUE 4D applications, FROM STATIC TO 25MHZ

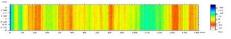

No blur during exposure sensitive measurements

• Acquisition time, down to 10 μs



Non sensitivity to surrounding vibrations


Measurements in presence of turbulent air. Micro hot plate varying from 20°C to 800°C DHM[®] applications from -196°C to 1500°C

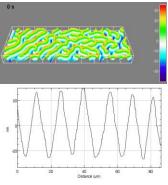


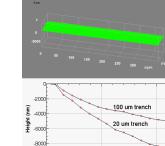
"Never static" suspended structure: Watch spiral spring

"On flight & in-line " measurement of moving samples for fast quality control and screening

4D: Time-resolved 3D measurements (real-time) Acquisition rate up to 100'000 fps (full field)

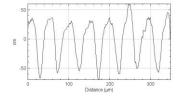
And also

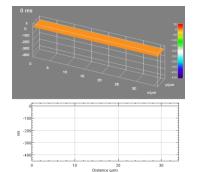

- Evaporation, melting, ...
- Dissolution
- Electro magnetic force


...

Investigate response of your sample to:

Chemical action


Light irradiance



Pressure

0 Laps Slyncée tec

40 60 Distance (um)

Mechanical wear

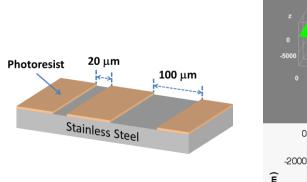
Wear track by ball-ondisk vacuum tribometer measured in-situ

End-point in-situ measurement during Electrochemical etching

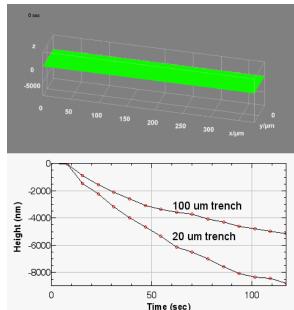
50 Time (sec)

> Programmed Liquid Cristal elastomer temperature response

Investigation of mechnical properties of graphene membranes



4D: Time-resolved 3D measurements (real-time)


Acquisition rate up to 100'000 fps (full field)

Measure as you manufacture

DHM[®] controlled wet chemical etching

Timescale: 2 minutes

4D: Time-resolved 3D measurements (real-time) Acquisition rate up to 100'000 fps (full field)

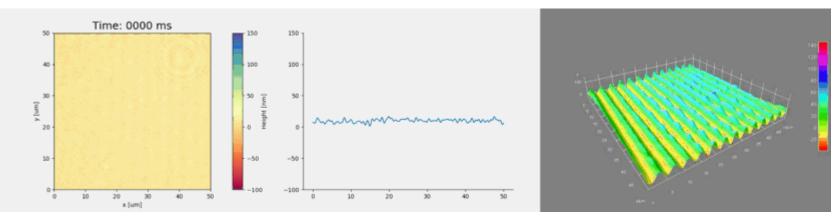
Measure as you manufacture

DHM[®] controlled interference lithography

scientific reports

Explore Content Y Journal Information Y Publish With Us Y

nature > scientific reports > articles > article


Article | Open Access | Published: 12 November 2020

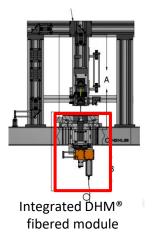
Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films

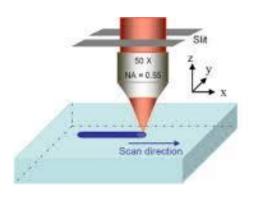
Insitu

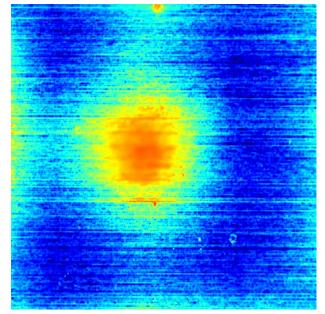
Heikki Rekola, Alex Berdin, Chiara Fedele, Matti Virkki & Arri Priimagi 🖂

Scientific Reports 10, Article number: 19642 (2020) Cite this article

- Surface topography is measured simultaneously to laser texturing of a light sensitive film
- DHM[®] information is exploited to control in real time during the process the exact structure topography


Onflight

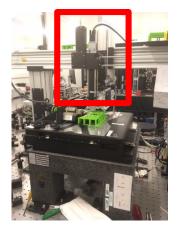

4D: Time-resolved 3D measurements (real-time)


Acquisition rate up to 100'000 fps (full field)

Measure as you manufacture

DHM[®] real time laser polishing

- Surface topography is measured simultaneously to laser polishing
- DHM[®] information is exploited to control the laser beam parameter

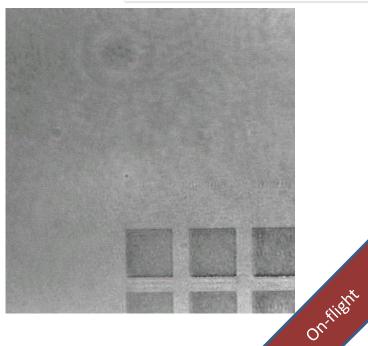


JPhys Photonics

4D: Time-resolved 3D measurements (real-time) Acquisition rate up to 100'000 fps (full field)

Measure as you manufacture

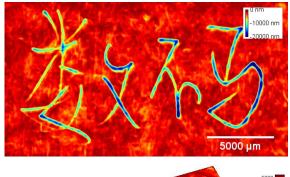
DHM® feedback to femtosecond laser engraving

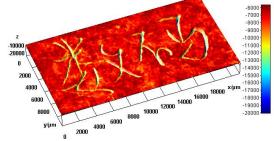


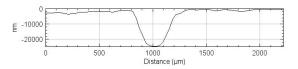
- Phase patterns are measured simultaneously to laser engraving
- DHM[®] information is exploited to control the laser beam parameter

PAPER · OPEN ACCESS

On the use of a digital twin to enhance femtosecond laser inscription of arbitrary phase patterns Olivier Bernard^{2,1} and Yves Bellouard¹ Published 25 May 2021 • © 2021 The Author(s). Published by IOP Publishing Ltd Journal of Physics: Photonics, Yolume 3, Number 3 Citation Olivier Bernard and Yves Bellouard 2021. *Phys. Photonics* 3 035003

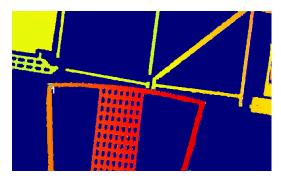

4D: Time-resolved 3D measurements (real-time)


Acquisition rate up to 100'000 fps (full field)


Characterize large surfaces

Forensic: automated signature 3D mapping

- Fast scanning of a large area of paper (2 cm x 5 cm) (3000 images, <60 s)
- Customized UI for simultaneous white light & DHM image acquisition

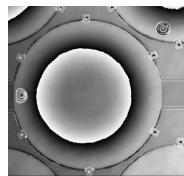


And also

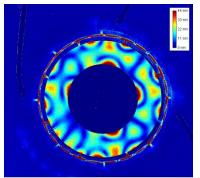
- Microphones & resonators
- Micro-mirror & DMD
- LCOS
- SAW

4D topography, vibrations maps, in- & and out-of-plane, frequency response of:

Actuators & micro motors



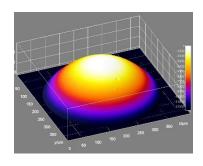
3D time-sequence wealth of information enables rigorous decorrelation of in- & out-of-plane components


Ultrasonic transducers

Full field of view (Megapixels) MEMS characterization

Stroboscopic synchronization up to 25MHz

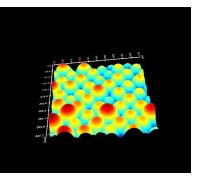
Measurements in liquid of the membrane response to burst signal excitation Gyroscopes & accelerometers

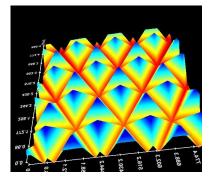


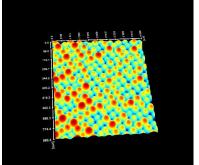
Vibration maps with Unrivalled spatial resolution Tunable micro-lens Ringing transients

1 CA=500: ROC=-831.13um, Conic=-2.74, SAG=47.0um RMS 2D=14.5nm

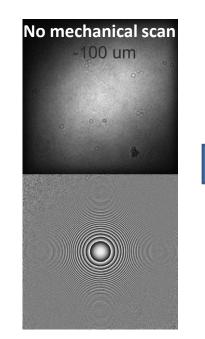
_CA=400: ROC=-517.22um, Conic=-8.12, SAG=42.97um RMS 2D=26.48nm 200 200 400 400 20 20 600 -600 800 -800 0 nm -0 nm 1000 -1000 1200 --20 -20 1200 1400 1400 1600 -40 1600 1800 -0 250 500 750 1000 1250 1500 1750 750 1000 1250 1500 250 500


0

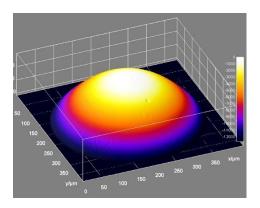

Reflection DHM®


MICRO OPTICAL COMPONENTS CHARACTERIZATION

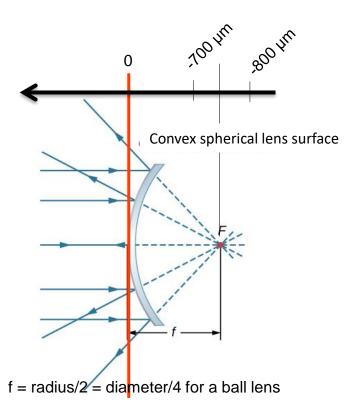
Transmission DHM[®]

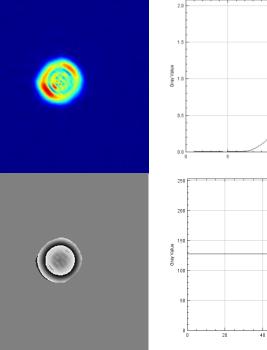

lyncée tec ""

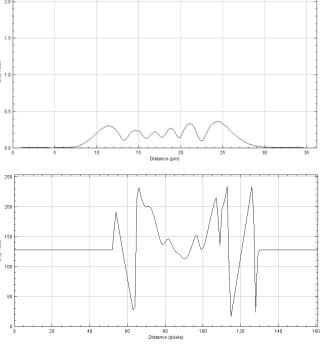
DHM[®]: micro-optics characterization


 A single hologram records the complex wavefront reflected or transmitted by the sample i.e. phase + amplitude

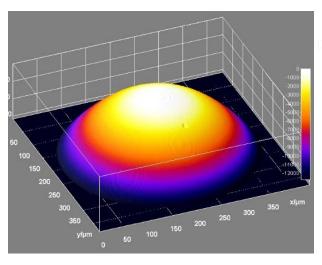
2. Wavefront is numerically propagated

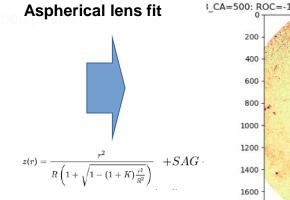



3. All-in-focus topography is calculated



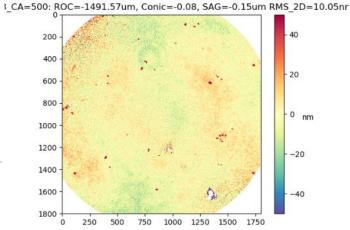
Numerical propagation of the wavefront

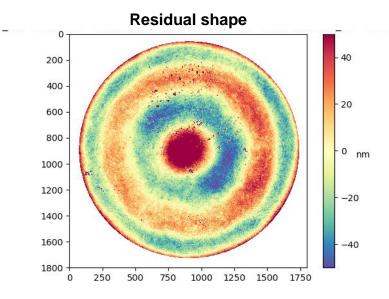

Propagation distance varying between -800 μm and -700 μm


> lyncée tec ™®

DHM[®]: Ball lens shape measurement

All in-focus Topography

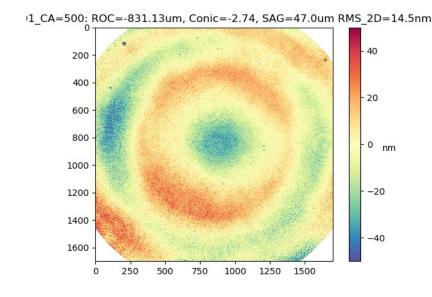

- Diameter 3mm
- R = 1500um
- F = R/2 = 750um



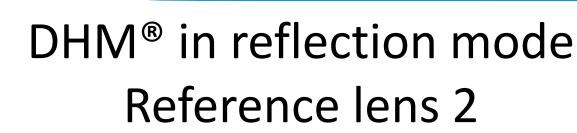
Residual shape

- R = 1492um
- Conic = 0.08
- RMS = 10nm

DHM[®] in reflection mode Quartz reference lens

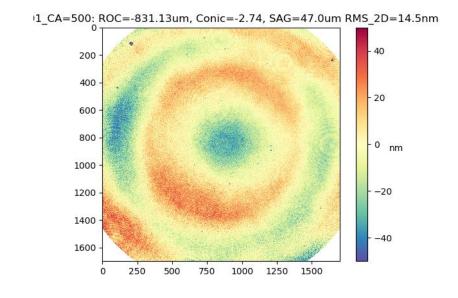

lyncée tec DHM®

	Zygo	DHM®
Radius [µm]	516	517
Conic	-8.4	-8.12
RMS [nm]	NA	26.48



Reference lens 1

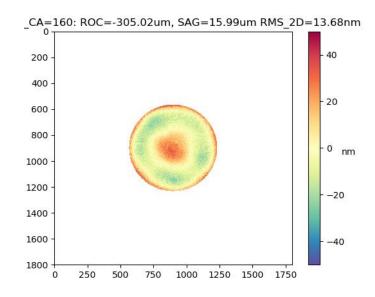
Residual shape



	Zygo	DHM®
Radius [µm]	827	831
Conic	-2.9	-2.74
RMS [nm]	NA	14.5

Residual shape

lyncée tec DHM®


	Zygo	DHM®
Radius [µm]	3952	3960
Conic	0	0
RMS [nm]	NA	8.72

(spherical fit)

Residual shape

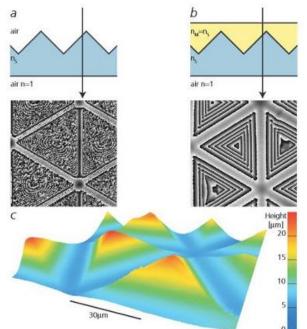
lyncée tec DHM®

	Zygo	DHM [®]
Radius [µm]	303	305
Conic	0	0
RMS [nm]	NA	13.68

(spherical fit)

Residual shape

lyncée tec DHM®


CA=550: ROC=-848.95um, Conic=-2.26, SAG=60.03um RMS 2D=31.57nm 0 nm -20 -40

	Zygo	DHM®
Radius [µm]	841	848.95
Conic	-2.3	-2.26
RMS [nm]	NA	31.57

DHM in transmission configuration

- Refraction measured, rather then reflection
- Refraction angle depends on the surrounding medium
- Measurement of High NA components using immersion, over large Fields Of View
- Measurement of the "function of the lens", not only of its topography

Measurements of corner cubes microstructures by high-magnification digital holographic microscopy

Jonas Kühn, Etienne Cuche, Yves Emery, Tristan Colomb, Florian Charrière, Frédéric Montfort, Mikhail Botkine, Nicolas Aspert, Christian Depeursinge

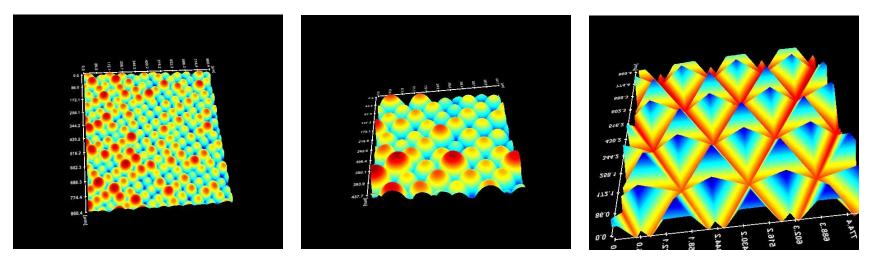
uthor Affiliations +

Proceedings Volume 6188. Optical Micro- and Nanometrology in Microsystems Technology, 61880-(2006) https://doi.org/10.1117/12.662030 Event: SPIE Photonics Europe, 2006, Strasbourg, France

Digital holographic microscopy for nanometric quality control of micro-optical components

Jonas Kühn, Florian Charrière, Tristan Colomb, Etienne Cuche, Yves Emery, Christian Depeursinge

Proceedings Volume 6475. Integrated Optics: Devices. Materials. and Technologies. XI: 64750V (2007) https://doi.org/10.1117/12.700523


Event: Integrated Optoelectronic Devices 2007, 2007, San Jose, California, United States

DHM measurement on 25µm base corner cube with high aspect-ratio: (a) without immersion liquid, (b) with immersion liquid with refractive index close to that sample, and (c) its resulting 3D view

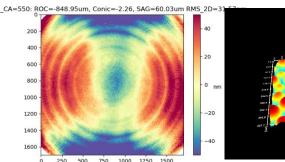
lyncée tec DHM®

DHM in transmission configuration

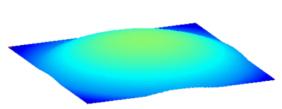
- High-NA diffusers and retroreflectors
- Large slopes & Large fields of view measured
- Measurement frame-rate: 190 fps

Summary: Digital Holography Microscopy (DHM®)

- On-Flight, In-Line, and In-Situ
- High throughput Micro-Optic Topography and Wavefront Characterization with interferometric resolution
 - Reflection:


lyncée tec DHM®

- Same results as with Zygo systems
- Transmission:
 - High NA optical components
 - Large field of view



DHM[®] R 2100 DHM[®] T1000

12800 fps

Tunable micro lens

Thanks for your attention

Lyncée Tec SA

Innovation Park Bâtiment-A CH-1015 Lausanne Switzerland www.lynceetec.com

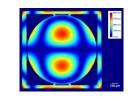
Yves Emery CEO Tel.: +41 (0)24 552 04 20 Fax: +41 (0)24 552 04 29 info@lynceetec.com

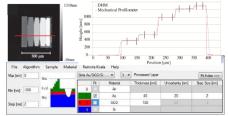
yves.emery@lynceetec.com

Lyncée Tec SA

DHM[®]: a complete range of stand-alone system and add-on modules

Options and accessories


Software: acquisition, automation, data analysis, SDK



Motorized stages Environmental for automation control (vacuum, T, ...)

Automated QC

2021

Vibration analysis

Spectral reflectometry