piesimaging

Michel Antolovic

Changing the way we count photons

EPIC Online Quantum Technology Meeting on Single Photon Sources and Detectors

Photon counting arrays

Based on single photon avalanche diodes (SPADs)

Tailor made SPAD arrays and image sensors with the highest sensitivity and lowest noise

Why SPAD arrays?

- SPADs have exceptionally **high readability of low light signals** (quantified in a high signal-to-noise ratio)
- SPAD have extremely **precise timing** (quantified in a low standard deviation)

Pi Imaging Technology SA

Why SPAD arrays?

	Low light	High speed	Timing precision							
	Quantum, single particle	Scanning over space,	Estimating a time distribution,							
		oversampling in time	typically with a pulsed light							
			source							
Examples										
	Single molecule analysis, photon	Scanning microscopy, high-speed	FLIM, LIDAR							
	antibunching	imaging								

10 impinging photons

SPAD arrays in scanning microscopy

- Image scanning microscopy (ISM)
 - Increase resolution by a factor of 1.7 to 4
 - Increase light collection
- Fluorescence lifetime imaging (FLIM)
 - Increase imaging speed / reduce pile-up effect by a factor of 23

SPAD arrays in quantum applications

- Simplify setup for
 - Photon number resolving detection
 - Photon antibunching
- Due to
 - Integrated TCSPC/time-tagging
 - No need for beam splitting

Lubin et al. 2019

SPAD image sensors for high speed imaging

Morimoto, Antolovic, Bruschini, Charbon et al., Optica, 2020

- Count photons
- Up to 100'000 frames per second
- Zero readout noise

SPAD image sensors for widefield FLIM

- Increase frame rate to 1-30 Hz
- Pixel resolution 512×512
- Complementary solution to scanning FLIM

PpIX dissolved in DMSO 1.5 [µg/mL]

g

SPAD technology

- 23 to 512×512 pixels
- Peak detection probability >50%
- Microlens enhanced fill factor
- Typical dark count rate <100 cps
- Integrated time tagging with 20 ps resolution
- Integrated time gating with 18 ps phase shift resolution

Time tagging

- 20 ps resolution
- Get time of arrival and pixel address of each photon

Time gating

18 ps phase shift resolution

SPAD23

SPAD23 software

- Photon counting up to 180 Mcps
- Time tagging up to 90 Mcps
- TCP/IP control of the software
- Simple integration in MATLAB, Python or Octave

🕾 Live view 🛛 +	Photoncounting 🛛 🔺 Tir	mestamping ψ	Settings					
Status USB Connected		Test USB			Pulse characterization			
		Test mode Bytes to read		Counter ~		Select SPAD	0 ~	~
				1048576	-	Pulse mode	Width ~	
	Reset connection					Integration time	186 ms	•
Operating voltages		Operating temperatures			Command server			
		FPGA die 37.8 °C			Second second	ted		
Vec 31.0.V		PCB	37 8 90			Remote opera	ation	1
				1).				
Start pulse width on SPAD 0 for 18 Time [ns], Count	measurement 6 ms. s [#]							
0010.0								
0020,0								
0030,0								
0030,0 0040,0								
0030,0 0040,0 0050,8								
0030,0 0040,0 0050,8 0060,641								
0030,0 0040,0 0050,8 0060,641 0070,7771								
0030,0 0040,0 0050,8 0060,641 0070,7771 0080,5362								

SPAD512²

michel.antolovic@piimaging.com

SPAD512² software

- Photon counting
 - 100,000 fps @ 1-bit for 1.3 s
 - 2,500 fps @ 4-bit continuous
 - 400 fps @ 8-bit continuous
- Time gating with 18 ps gate shifts
- Integrated phasor FLIM functionality
- TCP/IP control of the software
- Simple integration in MATLAB, Python or Octave

Get in touch with us

What we offer: SPAD arrays Looking for: system integrators of SPAD arrays

#hiring, check out our LinkedIn page Pi Imaging Technology, Fondation EPFL Innovation Park 1015 Lausanne, Switzerland Email: info@piimaging.com Website: piimaging.com