# QUANDELA

# Quandela, from the Academic Research in Semiconductor Quantum Dots to the optical Quantum Computer

Marie BILLARD *Quality Performance Manager* 

EPIC

21<sup>st</sup> April 2022

Credits slides: Niccolo Somaschi – Marie BILLARD

# Quantum computing: the space race of the century



© Quandela, 2021

Quandela, from the Academic Research in Semiconductor Quantum Dots to the optical Quantum Computer

Marie BILLARD

### Architecture of an Optical Quantum Computer



### Architecture of an Optical Quantum Computer





Photons are light particles with **no mass** and **no electric charge** Infinite coherence time

#### **Requirement:**

#### A Bright source

Probability of having a photon after a laser pulse

#### Acquisition time for a N photons protocole $/10^{N}$





Photons are light particles with **no mass** and **no electric charge** Infinite coherence time

**Requirement:** 

A Bright source of single photons

Probability of having not more than one photon per laser pulse

Considering two consecutives entrance of a photonic chip, two waveguides.





Photons are light particles with **no mass** and **no electric charge** Infinite coherence time

**Requirement:** 

A Bright source of single and indistinguishable photons

All emitted photons shared the same physical properties

Hong-ou-Mandel effect







© Quandela, 2021

Quandela, from the Academic Research in Semiconductor Quantum Dots to the optical Quantum Computer

Marie BILLARD



© Quandela, 2021

Quandela, from the Academic Research in Semiconductor Quantum Dots to the optical Quantum Computer

Marie BILLARD





© Quandela, 2021





© Quandela, 2021

Research lab version

Y WHAT

Usability and miniaturization must follow the increase of performance









© Quandela, 2021

# SM Fiber pigtailed single-photon sources – initial prototypes



Brightness Fibered\* 7 % (4 MHz)

\* Brightest determinic source



# SM Fiber pigtailed single-photon sources – initial prototypes



Brightness Fibered\* 7 % (4 MHz)

\* Brightest determinic source

Pigtailed version compatible with photon detector systems



























... and an optical devices simulator for quantum computing ...



### Prometheus – the first standalone optical qubit emitter



#### An all-in-one product

1. User interface - control

- 2. Lasers & Electronics
- 3. QShaper laser shaping module
- 4. QDMX-6 Photonic Qubit Router
- 5. QFiber qubit control unit
- Cryogenically cooled single-photon source eDelight (40 K or 4 K version)

2 cm



#### Prometheus – the first standalone optical qubit emitter





# Thank you for your attention

# Do you have questions?

EPIC

21<sup>st</sup> April 2022

Credits slides: Niccolo Somaschi – Marie BILLARD

# MosaiQ: optical quantum platform

6-qubits – Fully reconfigurable platform from summer 2022



- Double the number of qubits
- Solve VQ algorithms with "concrete" impact
  Network optimization material design
- Add error mitigation and error correction protocols

Assessing the quality of near-term photonic quantum device, Mezher, Mansfield, arXiv:2202.04735 (2022)

# MosaiQ: optical quantum platform

#### Front end

Python Libs, REST API, Visual/Graphical interface, Integration with existing platforms

#### Compiler

Logical Qubits <> Photon encoding \* paper in preparation

Assembler Calibration, Machine Language

Hardware Modules Electronics, FPGA, Voltage Sequence

#### **Semiconductor Fabrication**

6-qubits – Fully reconfigurable platform from summer 2022



- Double the number of qubits
- Solve VQ algorithms with "concrete" impact
  Network optimization material design
- Add error mitigation and error correction protocols

Assessing the quality of near-term photonic quantum device, Mezher, Mansfield, arXiv:2202.04735 (2022)



#### © Quandela, 2021

# MosaiQ: optical quantum platform

#### Front end

Python Libs, REST API, Visual/Graphical interface, Integration with existing platforms

#### Compiler Logical Qubits <> Photon encoding \* paper in preparation

Assembler Calibration, Machine Language

Hardware Modules Electronics, FPGA, Voltage Sequence

**Semiconductor Fabrication** 

PERCEVAL Optical QC Simulator (March 31<sup>st</sup> 2022) 6-qubits – Fully reconfigurable platform from summer 2022



- Double the number of qubits
- Solve VQ algorithms with "concrete" impact
  Network optimization material design
- Add error mitigation and error correction protocols

Assessing the quality of near-term photonic quantum device, Mezher, Mansfield, arXiv:2202.04735 (2022)



© Quandela, 2021

### SM Fiber pigtailed single-photon sources













#### SM Fiber pigtailed single-photon sources









Z alignment

Marie BILLARD



Quandela, from the Academic Research in Semiconductor Quantum Dots to the optical Quantum Computer