

Depolarization compensator

Solution for depolarization loss issues

About WOP

18 years of expertise

in femtosecond laser micromachining with a high focus on glass

6 in-house and 2 licensed patents

enabling cutting-edge technologies

50+ professionals

5 Ph.D., 30 M.S. and B.S.

R&D studies

with more than 10 academic and research partners

Members of

We deliver solutions for your μ tasks

Full-service solutions

HAVE A MICRON CHALLENGE?

All materials: glass, sapphire, ceramics, silicon, metal, plastic, optical fibers.

Our Customers: Science & Industry

Laser Manufacturers Challenges

- How to generate high peak power (TW/cm2) and high repetition rate (MHz) of subpicosecond pulses?
- Chirped pulse **amplification method is limited** in gratings size.
- Fiber lasers are limited in SMF mode area.
- Solid-state amplifiers at room temperature require high peak power pumping and face cooling challenges.
- Double-pass bulk amplifiers experience thermal effects in the highly pumped gain medium cause significant power losses via depolarization if a laser system contains polarization-sensitive elements.
- Cooling causes axially symmetric temperature gradients that entail mechanical stresses in the crystal resulting in birefringence of the crystal.

Solution: Depolarization Compensator

- Thermal effects in a high-power laser's gain medium create predictable axially symmetric temperature gradients.
- They generate mechanical stresses in pumped crystal it leads to induced birefringence.
- Generated optical anisotropy causes significant power losses if a laser system contains polarization-sensitive elements (e.g. Brewster plates, Faraday rotators).
- WOP solution DEPOLARIZATION COMPENSATOR.

Two-dimensional fast and slow axis orientation distribution map. R.=2/ marks the contour of SVWP where phase retardance is =2, R.SVWP/ marks the edge of the inscribed birefringence map, and R.e I./ marks the radius of the glass substrate of the element.

Retardance profile across the dashed line within SVWP element.

Advantages vs. Alternatives

It is more beneficial compared to other known methods:

- No absorption
- Very low scattering
- Custom and continuous point-by-point patterns
- Maximum power extraction possibility without additional beam quality degradation
- Flexibility to compensate different amounts of depolarization by
- stacking more than one element
- Saves space, is easy to handle
- Significantly lower price

Retardance profile.

Depolarization in dependence of probe beam polarization for a [100]-cut crystal (left), phase shift (middle) and local orientation of the birefringent axes (right).

Initial SVR specifications

- Substrate material fused silica (Ø 1 inch)
- Wavelength range from 200 nm to 3500 nm
- Retardance from 10 nm to 1750 nm
- Diameter from 0.1 mm to 15 mm
- High 94% transmission @ 1030 nm (no AR coating)
- High damage threshold:
 63,4 J/cm² @1064 nm, 10 ns
 2,2 J/cm² @1030 nm, 212 fs

We Can Fabricate Various SVRs

for tailored polarization conversion and beam shaping

Don't hesitate, contact us!

sales@wophotonics.com www.wophotonics.com solutions for your μ tasks

