

Nanoscribe and Quantum Technology

Jörg Smolenski Business Development Manager Nanoscribe GmbH 07th February 2022

Main challenges in optical coupling

- Reduce coupling losses from/to fibers, edge couplers, grating coupler, emitting facets.
- Steer and form beams from
 - From small to large or large to small Mode Field Diameters (MFD)
 - In different directions (0°,45°,90°,...)
- Relax alignment tolerances
- Flexible use with any material platform

Quantum X align – Dedicated tool for improved optical coupling

- Up to 100 nm precise alignment
- Automatic printing on fiber arrays & chips
- Web offer with Partner PHIX for Lensed Fiber Arrays (LFA)

Printing on fibers 3D alignment to fiber core and emission direction

Printing on 3D topographies 3D alignment to topographical features

Quantum X align – Dedicated tool for improved optical coupling

EPIC OTM – Quantum Computing

- Up to 100 nm precise alignment to waveguides
- Automatic printing on fiber arrays & chips
- Web offer with Partner PHIX for Lensed
 Fiber Arrays (LFA)

Printing on fibers 3D alignment to fiber core and emission direction

Printing on photonic chips 3D alignment to on-chip markers, waveguides etc.

Printing on 3D topographies 3D alignment to topographical features

*Chip from HandheldOCT

Quantum X- align Aligned multiphoton lithography for high precision Requirements for Photonic Integrated Circuits (PIC) Reduce coupling losses → < 1dB Steer and form beams from • From small to large or large to small Mode Field Diameters (MFD) In different directions (0°,45°,90°,...) • Relax alignment tolerances for optical coupling \rightarrow +- few µm (X-Y-Z) → aligned 2PP 3D Printing Flexible on any material platform \checkmark Photonic integration Micromechanics Photonic integration Nanoscribe Quantum X align with automated alignment

*Chip from HandheldOCT

Think big. Print nano.

Contact us

Jörg Smolenski Smolenski@nanoscribe.com

Application exampls

EPIC OTM – Quantum Computing

Application example – Printing on fibers Tailored lensed fibers

Wide beam

Fiber

Beam expander for relaxed alignment tolerances in packaging

Focusing lenses for low loss direct coupling to tapered waveguides

Application example – Printing on fibers 3.6µm MFD focus lens for 1550nm

Application example – Printing on fibers Beam expander for 532nm wavelength

Application example – Printing on photonic chips Beam shaping optics for 1060nm

7. Development and visual check

Application example – Printing on photonic chips Beam shaping optics for 1060nm

z [µm]

8. Beam characterisation

Application example – Printing on 3D topographies Tips and rebar structures on AFM cantilever

Application example – Printing on 3D topographies Tips and rebar structures on AFM cantilever

Think big. Print nano.

Contact us

Jörg Smolenski Smolenski@nanoscribe.com