

OCONTY

Effects of Beam Shaping on L-PBF Processes Stability – Productivity – Material Properties

EPIC Online Meeting, 07.03.2022

Florian Eibl, Marco Beckers, Martin Buscher Rob Martinsen Christian Schröter Aconity3D GmbH, Herzogenrath, Germany nLIGHT, Inc., Vancouver, USA Optoprim Germany GmbH, Unterschleißheim, Germany

Today's objectives

Motivation

Beam shaping reinvented

Current state of investigations

- Processing
- Mechanical Properties
- Metallography
- Simulation

Summary

Introduction

- L-PBF is complex!
 - Interaction of various effects
 - Many influencing factors
 - Not fully understood (yet)

Knowledge about and control over parameters is crucial

Laser-integrated Beam Shaping

AFX Programmable Beam Control

	Index 0	Index 1	Index 2	Index 3	Index 4	Index 5	Index 6	
Ring	0	24	37	54	74	84	89	[%]
Center	100	76	63	46	26	16	11	[%]
Maximum	600	700	800	1050	1235	1235	1235	[W]
Single-mode spot size d _o = 130 µm	٥	0	0	0	0	0	0	Ring-mode spot size 3d_o = 360 μm

Intensity Distribution as additional process parameter

Experimental Setup and Procedure

IN718

- Six runs, 180 samples (10x10x10 mm³) each
 - Power P_L (200-1000 W)
 - Scan speed v_s (100-2000 mm/s)
 - Hatch distance Δy_s (150, 200 and 250 µm)
 - Layer thickness d_Z (50 and 100 μ m)
- Index 0 defocused
 → matching spot diameters

Results – Processing Windows

Process stability increased with ring mode intensity distribution

7

Results – Mechanical Properties

Tensile Strength AND Elongation increased for Index 6 processing

 $P_L = 700 \text{ W}, v_S = 1250 \text{ mm/s}, \Delta y_S = 150 \text{ }\mu\text{m}, d_Z = 50 \text{ }\mu\text{m}, n = 3$ 8

Results – Metallography SEM/EBSD

Strong preferential orientation <001> and sharp texture for Index 3 & 6

Conclusion

Freedom to Operators!

- Targeted adjustment of texture and mechanical properties via different laser intensity distributions
- More control over melting track shape & stability
- Within build jobs, within layers, within parts

Thank you for your Attention

For further information contact us:

Aconity3D GmbH www.aconity3d.com info@aconity3d.com +49 2407 5529 200