

LASER DAMAGE TESTING

Dr. Andrius Melninkaitis

CEO & Cofounder @ Lidaris Senior Research Fellow @ Vilnius University

www.lidaris.com

/ info@lidaris.com

+370 609 09233

High-power lasers suffer from laser damage phenomena

Why optics get damaged?

Laser damage is a complex issue: many things can trigger it

- Integrators demand "unbreakable" optics
- Optic is sometimes returned as "damaged"
 - Redo batch or replace optics
 - Lack of understanding how to deal with laser damage
 - What went wrong?
 - Can I trust my vendor?
 - Is quality repeatable from batch to batch?

OPTICS DISTRIBUTORS PROSPECTIVE

Customers refuse to buy coatings without proven LIDT numbers

I need to improve optics, but there are too many parameters to optimize: R&D is costly

OPTICS MANUFACTURER

What can LIDARIS do for EPIC members?

Better Optics Performance = Competitive Edge

What we do?

Break optics to survive high intensity

Perform ISO based testing or certification

- Laser Damage Threshold (LIDT)
- Predict lifetime (ps/fs pulses): best and worst scenario
- Øther tests: absorptance + scattering + thermal/wavefront distortion
 - Pick best coatings on the market
 - Compare performance among others
 - Nondestructive pass/fail testing
 - Fast turnaround dedicated service (space-limited: inquiry for availability)

Educate:

- Get familiar with LASER DAMAGE
- Help to choose relevant testing approaches

Support Your Optics R&D projects

- Help to understand "what went wrong" and how to improve it (Failure mode analysis)
- Customized functional metrology
- Quantitative feedback

What EPIC members can do for LIDARIS?

- Introduce your products to us
 - we also consume optics and lasers
- Share your challenges with us
 - Book a Zoom meeting (it is free)
 - Come to us, visit us
 - Plan with us about your R&D projects

Why Should I Trust LIDARIS?

ISO 9001 Certified

- Spin-Off of Vilnius University (Laser Research Center)
- R&D projects with industry leaders, including ESA
- Test House of SPIE Laser Damage Competition (2020, 2021 In cooperation with Livermore National Lab)
- Contribute ISO standard development process
- Cover wide range of testing needs (fs-CW / Air-Vacuum)

International Organization for Standardization

3x Internationally Awarded:

THANK YOU FOR YOUR ATTENTION!

CONTACT US LET'S MAKE A DIFFERENCE!

<u>sales@lidaris.com</u>

Available LIDT testing conditions

Pulse range	Laser	Effective pulse duration ⁽¹⁾	Wavelengtl s, nm	ו Pulse repetition rate, Hz
CW	CW Ytterbium (Yb) Fiber Laser	Tunable 1 ms – 30 s ⁽²	₄₎ 1074±6	Single shot
ns	Nd:YAG (single mode)	10 ns 5 ns 5 ns 4 ns 4 ns	1064 532 355 266 213	1-100
ns	Nd:YAG OPO (single mode)	⊃ ~4 ns	710-810 1500-2100	1-100 ⁽²⁾
ps-fs	Yb:KGW (Kerr lens mode-lock)	Tunable 180 fs – 12 ps ⁽²⁾	1030 ⁽³⁾ 515 343 258	Tunable 1-200000 ⁽²⁾
fs	Ti:Sapphire ⁽³ (Kerr lens mode-lock)	Tunable ³⁾ 45 fs – 12 ps ⁽²⁾ 45 fs – 1 ps 45 fs – 500 f	800 400 s 266	Tunable 10, 100, 1000
fs	Ti:Sapphire OPO (Kerr lens mode-lock)	~ 40-80 fs	250-2500 ⁽⁵⁾	Tunable 10, 100, 1000 ⁽²⁾