

Network Synchronization Test Applications

Dave Fenstermacher
Title: System Engineer

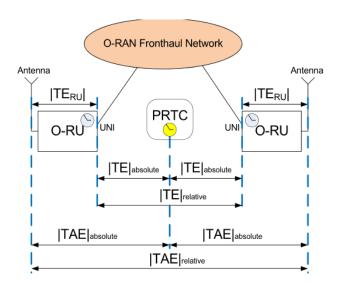
October 6, 2021

Agenda

- Introduction
- Time Alignment Error and Time Error
- Synchronization Test Applications
- Synchronization Tester
- Challenges
- Q&A

Introduction

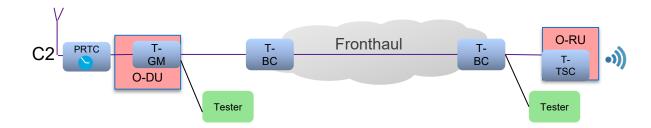
- 5G and LTE advanced services pose new challenges for synchronization networks:
 - 3gpp technical specs such as 36.104/38.104
 - SLAs derived from Time Alignment Error TAE
 - TAE relative: Largest timing difference between two antenna
 - Different categories dependent on wireless service needs.


3GPP feature	RAN	
SGFF leature	LTE	NR
MIMO or TX-diversity transmission	Category A+	Category A+
Intra-band contiguous carrier aggregation	Category A	BS Type 1: Category B BS Type 2: Category A
Intra-band non-contiguous carrier aggregation	Category B	Category C
Inter-band carrier aggregation	Category B	Category C
TDD	Category C	Category C
Dual Connectivity	Category C	Category C
COMP	Not specified in 3GPP	Not ready in 3GPP
Supplementary Uplink	Not applicable for LTE	Not ready in 3GPP
In-band Spectrum Sharing	Not ready in 3GPP	Not ready in 3GPP
Positioning	Not specified in 3GPP	Not ready in 3GPP
MBSFN	Not specified in 3GPP	Not ready in 3GPP

CPRI.info

Time Alignment Error and Time Error

- 3gpp Time Alignment Error metrics are composed of |TAE|_{relative} and |TAE|_{absolute}
- Time Error TE is defined as the time differences at a UNI compared to another UNI or PRTC
- |TAE|_{absolute} = |TE|_{absolute} + |TE|_{RU}
- |TE|_{absolute} limits are smaller than |TAE|_{absolute} listed below!



Category	TAE absolute	TAE relative	Application	
A+	32.5ns	ได้รักร	MIMO or TX diversity transmissions, at each carrier frequency.	
Α	65ns	130ns	E-UTRA intra-band contiguous carrier aggregation	
В	130ns	Dhling	NR intra & inter-band contiguous carrier aggregation; E-UTRA intra-band non-contiguous carrier aggregation	
С	1.5μs	14118	NR intra & inter-band non-contiguous carrier aggregation; TDD use cases	

5G Synchronization Test Application

- Verify Time Error at various intermediate points of the network
- Constant Time Error, Dynamic Time Error (MTIE/TDEV)
- Measurement limits defined in ITU-T G.827x documents
- Required measurement accuracy in nano second range

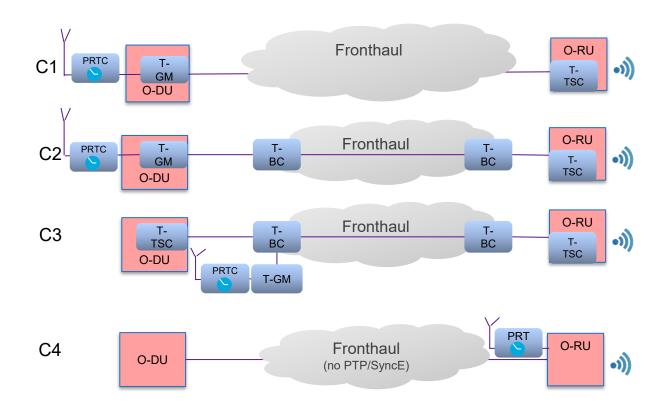
5G Synchronization Test Equipment

- Performing time error measurements in nano sec. range demand highly accurate timing/synchronization reference devices synchronized to GNSS
- Line of sight to GNSS is not always available therefore a holdover function is essential for field applications -> Highly stable oscillator
- Measurement reference device interfaces:
 - Multiband GNSS Antenna input
 - ToD, 1PPS, and 10MHz outputs

Challenges

- Field deployment environments pose several challenges for a proper operation of measurement reference devices:
 - Temperature change as users go between indoor and outdoor settings
 - Mechanical/magnetic stress due to transportation/movement
 - Proper time reference performance necessitates an accurate location survey (especially challenging in an urban canyon location) and fine tuning of the oscillator; they can be time consuming
 - Accurate accounting for delay in all measurement cables and antenna systems
 - Users expect adequate data sheets with details of the performance characteristics (e.g. holdover time), although the performance highly depends on factors mentioned above

THANK YOU


Q & A

5G Fronthaul Synchronization Architectures

