

EPIC Online Meeting, 02.11.2021

Seamless transition between ray and physical optics modeling

Frank Wyrowski

Fast Physical Optics Modeling with VirtualLab Fusion

About the breakthrough technology behind VirtualLab Fusion!

Optical Modeling and Design by Ray Optics

- Increasing demand for optical modeling and design in a more general theoretical and algorithm framework.
- Reasons include:
 - Varity of sources
 - Micro/nano-structured surfaces
 - > Miniaturization
 - Varity of application scenarios and use cases

Ray Optics Is Subset of Physical Optics

- Increasing demand for optical modeling and design in a more general theoretical and algorithm framework.
- Reasons include:
 - Varity of sources
 - Micro/nano-structured surfaces
 - Miniaturization
 - Varity of application scenarios and use cases

Ray Optics Is Subset of Physical Optics

In practice of optical modeling and design ray and physical optics appear deeply different!

Why? How to overcome that?

Unified Modeling and Design: Light Representation

Unified Modeling and Design: Light Representation

Unified Modeling and Design: Light Representation

Light representation: electromagnetic fields

We need to identify that part of physical optics, which deals with "geometrical laws relating to the propagation of the 'amplitude vectors' E and H."

We follow a suggestion of Max Born and Emil Wolf!

Citation from

Principles of Optics

Unified Modeling and Design: Light Propagation

*Here: Propagation in homogeneous media

Unified Modeling and Design: Light Propagation

Unified Modeling and Design

Integral

$$E^{\text{out}}(\boldsymbol{\rho}) = \mathcal{B}(\boldsymbol{\rho}' \mapsto \boldsymbol{E}^{\text{in}}(\boldsymbol{\rho}'))(\boldsymbol{\rho})$$
$$= \int \int_{X^{\text{in}}} \mathbf{B}(\boldsymbol{\rho}, \boldsymbol{\rho}') \boldsymbol{E}^{\text{in}}(\boldsymbol{\rho}') \, \mathrm{d}x' \, \mathrm{d}y'$$

Pointwise

 $\underline{\mathbf{B}}(\boldsymbol{\rho}')\boldsymbol{E}^{\mathrm{in}}(\boldsymbol{\rho}')\mapsto \boldsymbol{E}^{\mathrm{out}}(\boldsymbol{\rho})$

with coordinate mapping $oldsymbol{
ho}'\mapsto oldsymbol{
ho}(oldsymbol{
ho}')$

Connecting Solvers: Components

Connecting Solvers: Components

Includes

- Fourier Modal Method (FMM)
- Rigorous Coupled Wave (RCWA)
- Beam Propagation Method (BPM)
- LP Solver
- Mie Solver
- Runge Kutta Solver
- BSDF data

Includes

- Stratified media S matrix
- Coating matrix
- FMM per order
- Local elementary solvers
 - Thin Element Approximation (TEA)
 - Local Stratified Media Approximation (LSMA)
 - Local Grating Approximation (LGA)

Connecting Solvers

Includes and extends

- SPW integral
- Rayleigh-Sommerfeld integral
- Huygens' integral
- Far-field integral
- Debye integral
- Fresnel integral
- Fraunhofer integral

Connecting Solvers

Connecting Solvers: Example Configuration

Connecting Solvers: Example Configuration

Selection of freespace propagation

- Preconfigured
- Automatic
- Customized

Connecting Solvers: Example Configuration

Selection of freespace propagation

- Preconfigured
- Automatic
- Customized

Connecting Solvers: Example Configuration II

LightTrans International

Connecting Solvers: From Pointwise to Ray Optics

10 mm

LightTrans International

LightTrans International

LightTrans International

LightTrans International

LightTrans International

Fast Physical Optics by VirtualLab Fusion

- Connecting field solvers
- Seamless transition between pointwise and integral operations
- Includes ray optics
- Enables fast physical optics modeling

