

SL.

-

Assembly & Test

ALEXANDER JANTA-POLCZYNSKI

SENIOR ADVANCED PACKAGING ENGINEER

ajantapo@ca.ibm.com

North American Assembly and Test Provider

Packaging & test solutions

- Advanced Flip Chip & Photonics
- Any wafer source
- "Masters of Complexity"
- Outstanding characterization
- Design for manufacturing/Test
- OSAT > 40 yrs of experience

Market Segments

HPC HPC HPC HPC Herospace Defense Herospace Defense Herospace Defense

Advanced & Complex Package

• Design \rightarrow prototypes \rightarrow HVM

Efficient & Effective Production

- Low/High Volume
- High mix environment

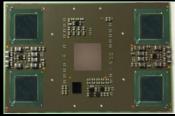
Better Time to market

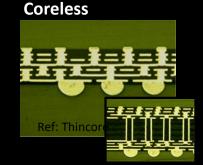
IBM Assembly and Test 2021

REDEF NING HE LIMITS

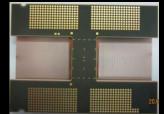
IBM Bromont – Advanced Packaging

Heterogenous integration of various node function in SiP


Large MCM

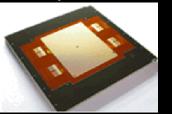


Large SCM/DCM



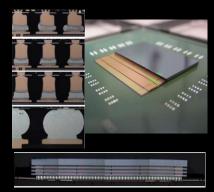
MCM - HI / SiP

Custom

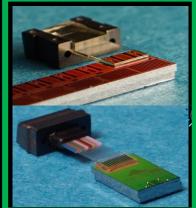


CSP

2.1D/2.3D



2.5D

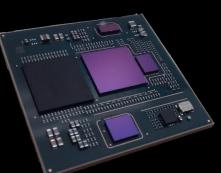


3D

Photonics

📣 IBM presentation

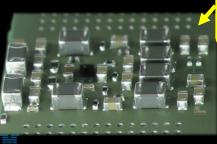
4

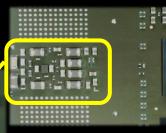

REDEF NING HE LIMITS

System in Package

FC-PBGA SIP solutions

Board level integration

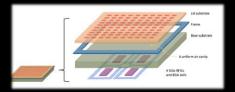

 \rightarrow Cost reduction

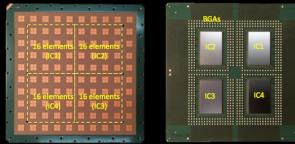


Mixing device technologies at package level provides:

- Very close die & components positioning
- Higher bandwidth and lower power
- Better signal integrity
- Smaller system level footprint
- Modularity for cost savings
 - ightarrow Next generation component drop-in

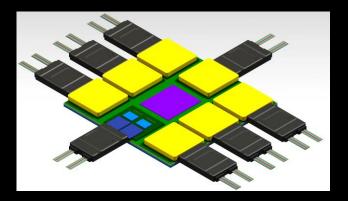
SIP in high volume production

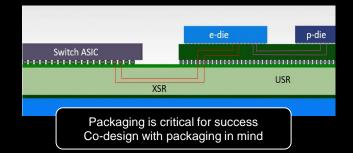



Antenna on Package

5G radio access application AoP SIP

- phased-array antenna-in-package module
- 64 dual-polarized elements
- Package size 70 x 70 mm
- Tight spacing control in assembly
- over 50dBm EIRP in TX mode
- ±40 degrees scanning range


Assembled phased array with four transceiver ICs showed



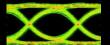
Co-Packaging – Advanced integration

Disaggregation \rightarrow Package integration Heterogenous integration of various node function in SiP

Simulation

Design

Substrate



Manufacturability

Optical Performance

Electrical Performance

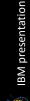
Reliability

Industry 4.0

Modeling

Measure & Test

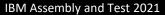
Thermal Management



\$

Cost / yield

Predictive manufacturing

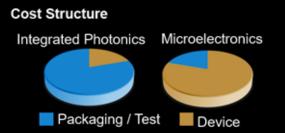


6

-joo

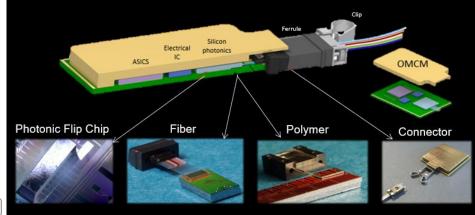
IBN.

Silicon Photonic Packaging Vision


REDEFINING HE LIMITS

Lowering packaging cost Increased scalability

- Active alignment
- One connection at a time
- Custom design


Manual / Low volume — Automated / High volume

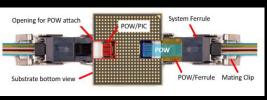
- Self alignment
- Multiple connections at a time
- Standard design

Leverage Microelectronic Packaging Infrastructure / Knowhow

Typical 2D Multi-Chip Module package with integrated optics

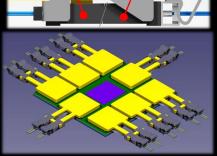
Photonic co-packaging demonstrator

MT ferrule attached to CSOP lid


MT ferrule part

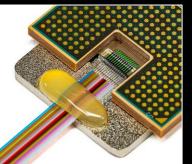
REDEFINING HE

High Fiber Counts Application

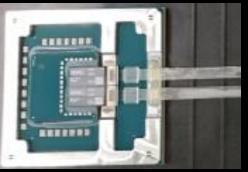

High Density Optical Port Counts Application

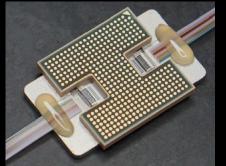
Integrated Connector

of fiber cable to be plugged in

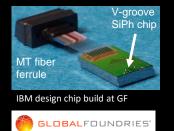


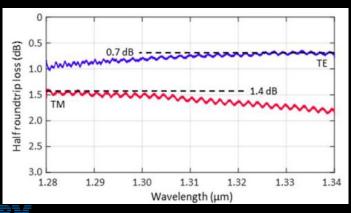
Clip installed during fiber cable plug in

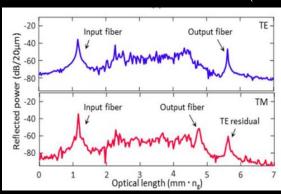

Solder Reflowable Silicon **Photonics Fiber assembly**

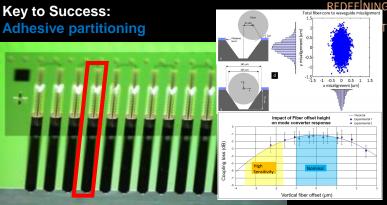

Strain Relief of fiber assembly pigtail

PIPES Transceiver


Full Optical Switch

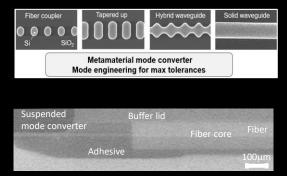

Fiber Array – Single mode solder reflowable coupler

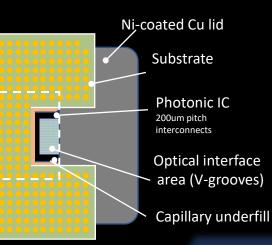



Parallel channel array (12ch TV) O, S, C, L bands compatible Couples both polarizations (TE / TM) High throughput pick n place tools Solder reflow compatible (260 C)

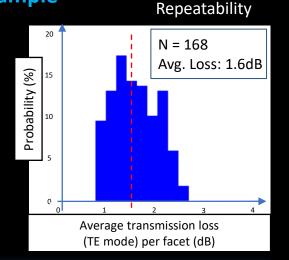
Integrated Metamaterial Interfaces for Self-Aligned Fiber-to-Chip Coupling in Volume Manufacturing

IEEE Journal of Selected Topics in Quantum Electronics Volume: 25, Issue: 3, May-June 2019




Structural adhesive for fiber

- Mechanical stability/robustness Fast UV tack (< 5 sec)
- Optical adhesive for suspended region: Optical performance
 - Reduce stress on fragile membrane



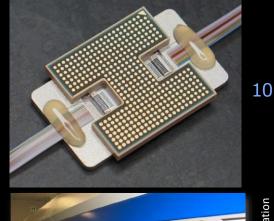
Fiber ribbon assembly in V-grooves (X-ray tomo)

Photonic Flip-Chip assembly example

Bottom view substrate side of the module

Formic acid flip-chip bonding

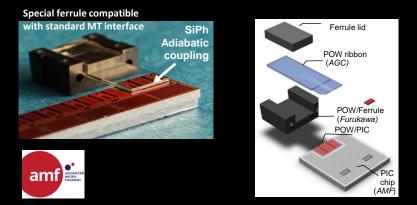
Fluxless solution required to maintain grooves/facet cleanliness and SWG integrity


Fluxless formic acid reflow with temporary adhesive material (tacking fluid)

No voiding / cracking of the IMC & solder

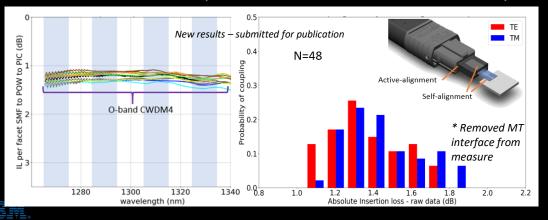
Formic acid reflow available at IBM Bromont

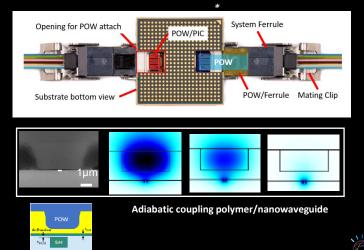
IEEE 70th ECTC 2020



IBM presentation

Compliant Polymer interface – Dense Single mode coupler


JSTQE 2020 REDEF NING *ECOC2020 IMITS



Parallel channel array (dense 50µm pitch – 12ch TV) O, S, C, L bands compatible Couples both polarizations (TE / TM) Assembly using high throughput pick n place tools

- Denser pitch (up to 25µm) at chip interface
- No need for deep grooves (wet etch process)
- Mode converter structure is simple
- Compliant material for CPI risk mitigation

Advances in Interfacing Optical Fibers to Nanophotonic waveguides via Mechanically Compliant Polymer Waveguides IEEE Journal of Selected Topics in Quantum Electronics - 06 January 2020

Offer

Expertise

- 7nm
- Proven material sets for high performance
- Prototyping to high volume manufacturing

Time to market

Benefit from existing models and designs to accelate MCM implementation
Beyond groundrules:
Customization
Characterization

Business Model

Co design partners
Streamlined manufacturing flow
Integrated supply chain

IBM presentation

13

We put our packaging know how at your service Focusing on your application and performance

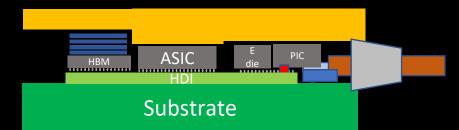
14

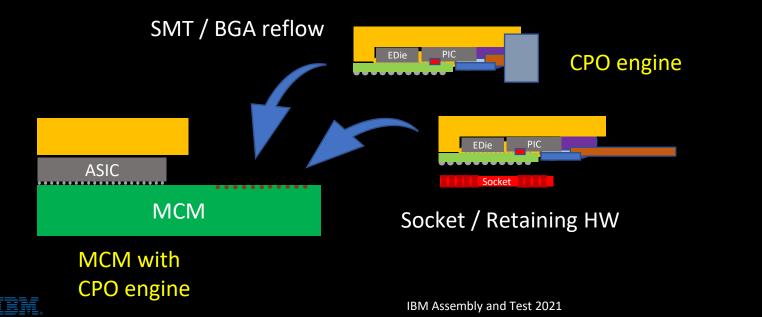
IBM presentation

-00

IBM Packaging and Test www.ibm.com/assembly

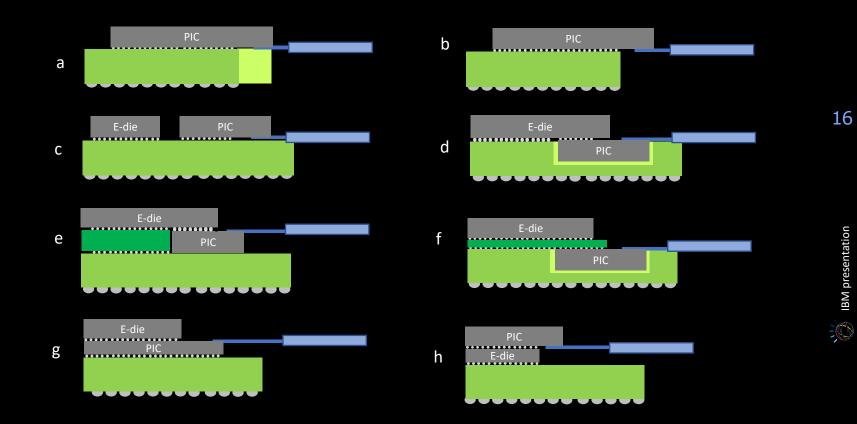
Thank You We are here for you!


ajantapo@ca.ibm.com

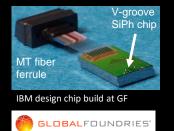


HDI with Photonics

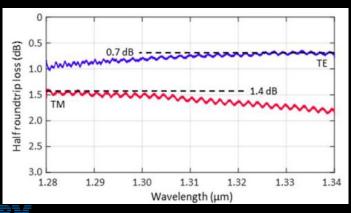
Co-packaged Optics Configuration examples

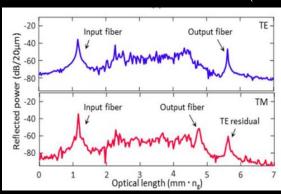


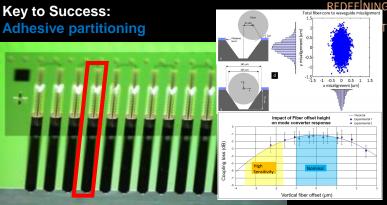
REDEF NING HE LIMITS


Co-Packaging in Advanced integration

IBM.

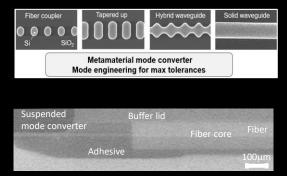

Fiber Array – Single mode solder reflowable coupler



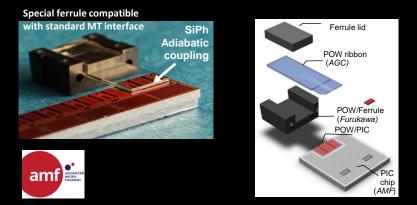

Parallel channel array (12ch TV) O, S, C, L bands compatible Couples both polarizations (TE / TM) High throughput pick n place tools Solder reflow compatible (260 C)

Integrated Metamaterial Interfaces for Self-Aligned Fiber-to-Chip Coupling in Volume Manufacturing

IEEE Journal of Selected Topics in Quantum Electronics Volume: 25, Issue: 3, May-June 2019

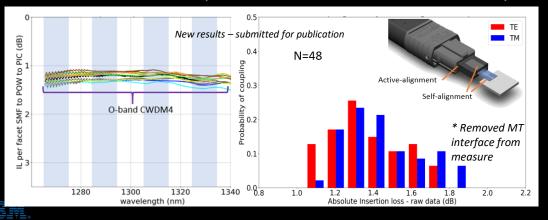


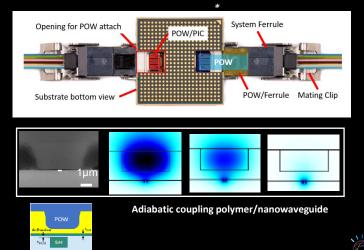
Structural adhesive for fiber


- Mechanical stability/robustness Fast UV tack (< 5 sec)
- Optical adhesive for suspended region: Optical performance
 - Reduce stress on fragile membrane

Fiber ribbon assembly in V-grooves (X-ray tomo)

Compliant Polymer interface – Dense Single mode coupler

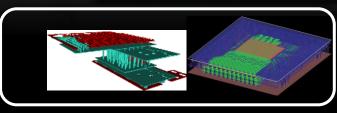

JSTQE 2020 REDEF NING *ECOC2020 IMITS

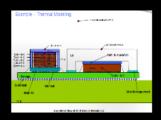


Parallel channel array (dense 50µm pitch – 12ch TV) O, S, C, L bands compatible Couples both polarizations (TE / TM) Assembly using high throughput pick n place tools

- Denser pitch (up to 25µm) at chip interface
- No need for deep grooves (wet etch process)
- Mode converter structure is simple
- Compliant material for CPI risk mitigation

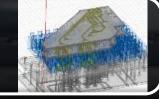
Advances in Interfacing Optical Fibers to Nanophotonic waveguides via Mechanically Compliant Polymer Waveguides IEEE Journal of Selected Topics in Quantum Electronics - 06 January 2020



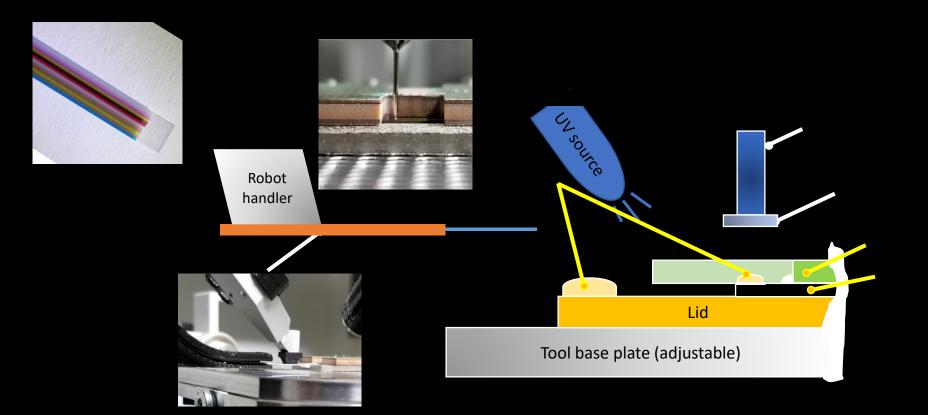

Deep capability in design, modeling, failure analysis and qualification

"First time right results"

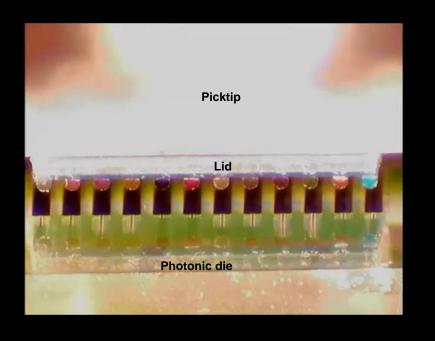
- Predictive and validated mechanical modeling
- Proven electrical modeling, simulation, analysis and characterization refined through empirical authentication
- Demonstrated thermal modeling capabilities confirmed through HVM products
- Innovative photonics single mode packaging and certified OSAT
- Top-of-the-industry failure analysis skills and labs
- Package and Product gualification services complying with reliability standards

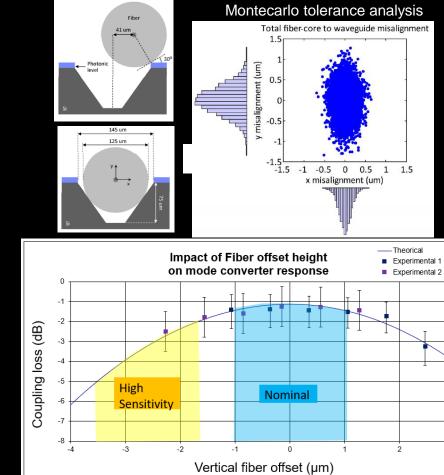


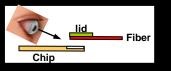
HFSS Q3D. 2D. SiWave


PowerSI IBM Internal tools

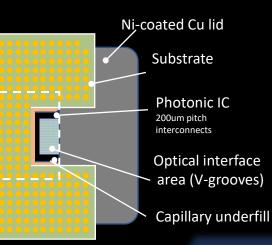
RFDFF

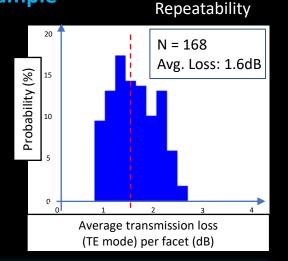






Fiber Array – Self-alignment





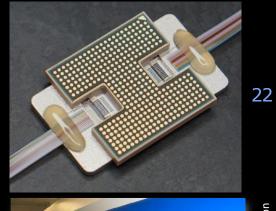
10 μm pick and place Self alignment to ~1 μm

Photonic Flip-Chip assembly example

Bottom view substrate side of the module

Formic acid flip-chip bonding

Fluxless solution required to maintain grooves/facet cleanliness and SWG integrity

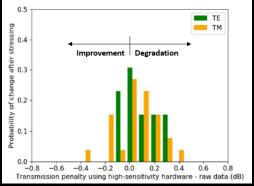

Fluxless formic acid reflow with temporary adhesive material (tacking fluid)

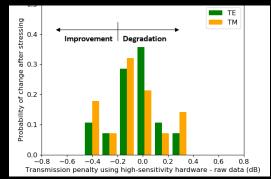
No voiding / cracking of the IMC & solder

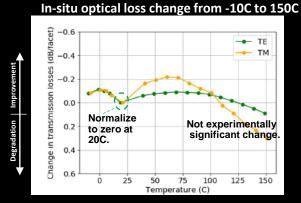
Formic acid reflow available at IBM Bromont

IEEE 70th ECTC 2020

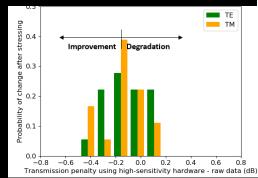
Formic acid furnace R&D formic acid oven also available



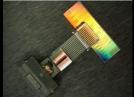

Fiber Array – Reliability Demonstration



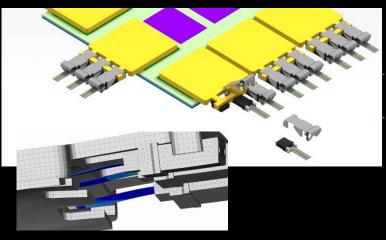
Solder reflow (5x) 1min@250C



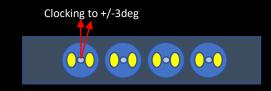
Thermal Cycling -40/85C&-40/125C : total 2000 cycles



Damped heat 85C 85%RH : 2000 hrs

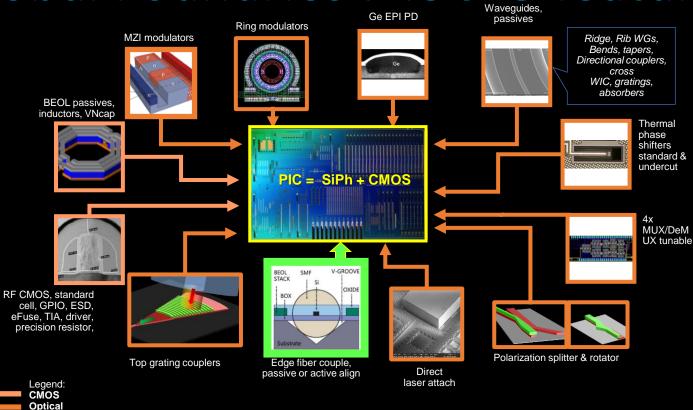


Assembly


Photonic copackage – Optical connectors

What is needed from fiber component suppliers

- Disruptive innovation to reduce connector size (integrated version)
- > Solder reflow compatible ferrules
- Low loss SM 1x16 .. 2x16 ? 1x24?
- SM with 80µm fiber on reduced pitch
- > PM arrays and Combination of PM / SMF fibers
- Efficient shipping and expedition of fiber component and photonic module



ER > 20dB

* Ideally Integrated connector to be solder reflow compatible

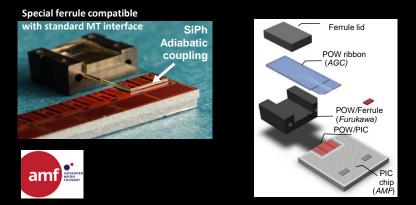
Global Foundries : 45CLO feature set

courtesy of GF source IBM-GF : CPO Webinar Sept16,2020

REDEF NING

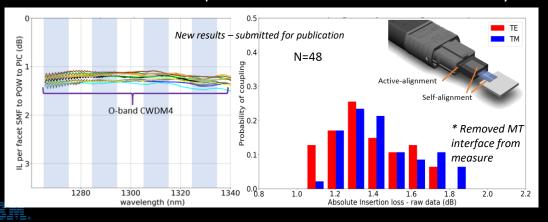
Global Foundries – Chips for co-packaged photonics

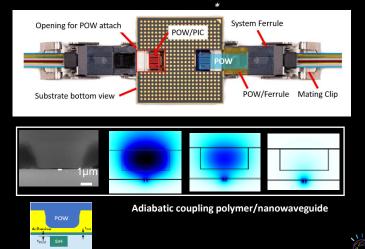
	Electronic technology for hybrid integration			GF monolithic CMOS - SiPh	
	14FF	22FDX [®]	BiCMOS	90WG	45CLO
nMOS Ft	270GHz	350GHz	500GHz	150GHz	280GHz
Supply V	0.8V	0.8V	3.3V	1.2V	1.0V-1.1V
Substrate	BULK	SOI	SiGe HBT	SOI	SOI
Mx res & rap	High	Low	Very low	Very low	Very low
Parasitic load	5-30fF	5-30fF	5-30fF	2-3fF	2-3fF
ESD cap	~50fF	~50fF	~50fF	0	0
Estimated TIA 3dB BW @1k û gain	24 GHz *(70fF)	28 GHz *(70fF)	33 GHz *(70fF)	35 GHz *(20fF)	47GHz *(20fF)


- RF-grade CMOS FETs integrated with SiPh
- Dense high speed channel integration
- Reduced packaging costs
- ESD elimination further reduces input capacitance
- Significant TIA bandwidth due to low input capacitance

courtesy of GF source IBM-GF : CPO Webinar Sept16,2020

Compliant Polymer interface – Dense Single mode coupler

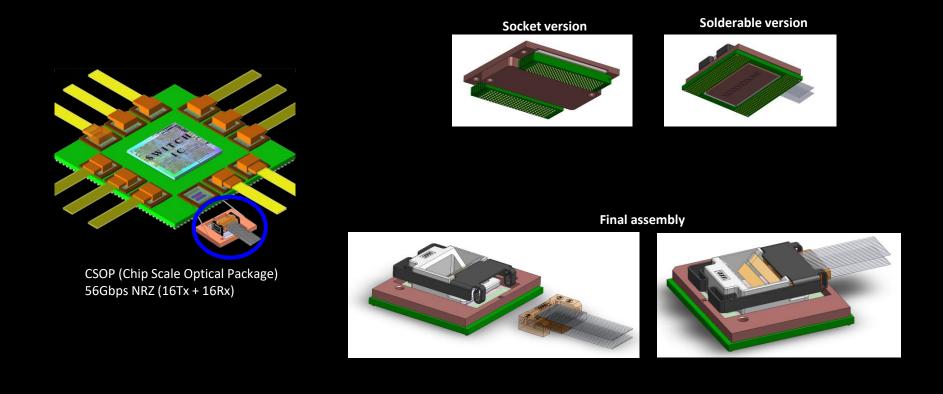

JSTQE 2020 REDEF NING *ECOC2020 IMITS



Parallel channel array (dense 50µm pitch – 12ch TV) O, S, C, L bands compatible Couples both polarizations (TE / TM) Assembly using high throughput pick n place tools

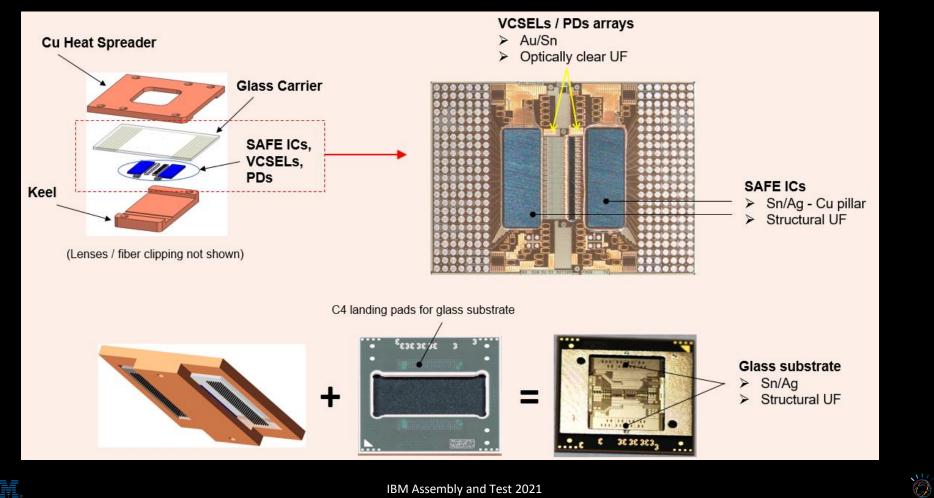
- Denser pitch (up to 25µm) at chip interface
- No need for deep grooves (wet etch process)
- Mode converter structure is simple
- Compliant material for CPI risk mitigation

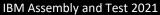
Advances in Interfacing Optical Fibers to Nanophotonic waveguides via Mechanically Compliant Polymer Waveguides IEEE Journal of Selected Topics in Quantum Electronics - 06 January 2020



ARPA-E Enlighten: Motion – VCSEL co-packaging

<u>Multi-wavelength Optical Transceivers</u> Integrated On Node





ARPA-E Enlighten: Motion – VCSEL co-packaging

