

DI TECNOLOGIA

Fluorescence Laser-Scanning Microscopy with SPAD Array Detector

> Giuseppe Vicidomini giuseppe.vicidomini@iit.it

Molecular Microscopy and Spectroscopy (IIT), and Genoa Instruments

> Technology Meeting on Novel Photonic Solutions for Microscopy

28th June 2021, Online, 15.00 - 17.00 CEST

Who We Are?

Dr. S. Perego Post Doc Biophysicist

Dr. G. Tortarolo Post Doc Bioengineer

Dr. E. Slenders Post Doc **Physicist**

M. Scotto Senior Technician Physicist

A. Rossetta PhD 3rd Year Bioengineer (with Nanoscopy)

A. Bucci PhD 2nd Year Physics-Engineer

Dr. M. Donato Junior Technician **Physicist**

F. Fersini PhD 1st Year **Electronics-**Engineer

S. Zappone Fellowship Biotechnologist

You

Marco Castello Post Doc - CTO Bioengineer

Simonluca Piazza Post Doc - CEO Bioengineer

Compagnia di San Paolo

Prof. Alberto Tosi Dr. Federica Villa Dr. Mauro Buttafava

Prof. Alberto Diaspro Prof. Colin Sheppard Dr. Paolo Bianchini Prof. Luca Lanzanò

Dr. Sami V. Koho

What We Do?

The core research of the MMS lab is the design, development and validation of novel **optical and** analytical tools that allow the modern biologists to observe biomolecule processes inside living biological systems with unprecedented temporal/spatial abilities and massive information content.

Laser-Scanning Fluorescence Microscopy (LSFM)

- a beam is focused by the objective lens on a (usually diffraction-limited) region of the sample;
- the molecules inside this region emit fluorescence which is collected by the objective lens and imaged by the tube lens in the image plane;
- a single-element detector (usually a PMT) integrates across time and space - all the photons in the image plane providing a single-intensity value;
- the region is scanned across the sample and all the intensity values registered during the different pixels dwell-time allow to build-up the image

by integrating photons (in time and space) a lot of useful information are lost;

Single-Photon LSFM (SP-LSFM)

- 5×5 element fully parallel (asynchronous read-out).

The number of elements is high enough to guarantees Nyquist sampling of the focal region, and low enough to maintain realistic data transfer.

- 44% fill-factor.

Fill factor enhanced with the BCD technology to 56%.

- < 1.5% cross-talk.

- PDE comparable to the typical GaAsP-PMT.

PDE doubled with the BCD technology (blue curve).

- 100 cps dark count @25°.

- 200 ps photon-timing jitter (FWHM).

Photon-timing jitter reduced to 100 ps with the BCD technology.

- tuneable hold-off time down to 20 ns. 50 MHz, < 10% after-pulsing.

Buttafava, M.,..., Tosi, A., Optica, 7(7):775-765 (2020)

SP-LSFM - A New Paradigma

From other groups:

- ¹ Tenne, R.,..., Oron D., Nat. Photonics 13:116–122 (2019)
- ² Sroda A.,..., Lapkiewicz R., Optica 7:1308-1316 (2020)
- ³ Scippioni L.,..., Gratton E., Nat. Methods 18(5):542-550 (2021)

From other groups:

- ⁴ Castello M.,..., Vicidomini G., Nat. Methods 16, 175–178 (2019)
- ⁵ Tortarolo, G.,..., Vicidomini , G., bioRxiv 741389; doi:10.1101/741389 (2020)
- ⁶ Koho, S. V.,..., Vicidomini G., Biomed. Opt. Express,11(6): 2905-2924 (2020)
- ⁷ Slenders, E.,..., Vicidomini, G., Light Sci Appl., 10: 31 (2021)
- ⁸ Rossetta, A.,..., Vicidomini, G., Submitted (2021)

Spatial Range

- via adaptive-optics;
- via two-photon-excitation ISM (TPE-ISM)⁶;
- via out-of-focus rejection.

Temporal Range

- via image scanning microscopy (ISM)⁴;
- via time-resolved STED-ISM;
 - via image deconvolution;
 - via deep-learning.

- via image scanning microscopy (ISM)⁴;

- via stimulated-emission-depletion ISM (STED-ISM)⁵;
 - via quantum microscopy (Q-ISM)¹;
- via super-resolution optical fluctuation imaging (SOFISM)²;
 - via image deconvolution⁶;
 - via single-molecule imaging.

Conventional LSM

Single-Photon LSM with SPAD array

Temporal Resolution

- via ISM with resonant-mirror;
- via fluorescence fluctuation spectroscopy (e.g., FCS, RICS)^{7,8};
 - via real-time single molecule

- via fluorescence lifetime imaging^{4,8};

- via photon coincidence correlation;
- via fluorescence lifetime imaging and spectral imaging³;

Super-Resolution SP-LSFM (via Image Scanning Microscopy)

BrightEyes-TTM: Open Source Time-Tagging Module

Open-Source BrightEyes-TTM Project

BrighEyes-TTM is based on cheap FPAGA evaluation board and electronics components available to buy all over the world.

FPGA firmware and Python software for data analysis are open-source

XILINX Kintex-7 FPGA KC705 Evaluation Kit

The FPGA allows for:

- 21 TDCs with 30 ps precision; - reprogrammability and scalability;
 - fast prototyping;
 - low cost.

The evaluation board provides:

- already implemented fast serial connectors;
- FMC connectors for integrating any asynchronous read-out array detectors; - a series of memory.

⁸ Rossetta, A.,..., Vicidomini, G., Submitted (2021)

Super-Resolution Fluorescence Lifetime Imaging

Polarity sensitive membrane probe ANEP in Prostate Carcinoma (PC-3) live-cells. Pixel-size: 62.5 nm. Image format: 800 × 800 pixels. Excitation power Pexc = 3 μW. Scale bars: 1 μm.

Conclusions

Conventional Laser-Scanning Microscopy

Laser-Scanning Microscopy with SPAD array

Further info at:

https://vicidominilab.github.io https://www.genoainstruments.com

The single-photon microscopy revolution

Asynchronous readout SPAD array detector allows leveraging the spatiotemporal information carry out by single-photons to implement a new set LSM techniques

How to support the revolution

improved SPAD array detector improved DAQ system cheap super-continuum pulsed laser and AO system new data analysis and storage tools