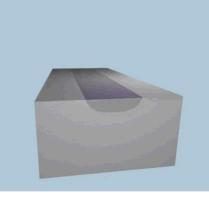
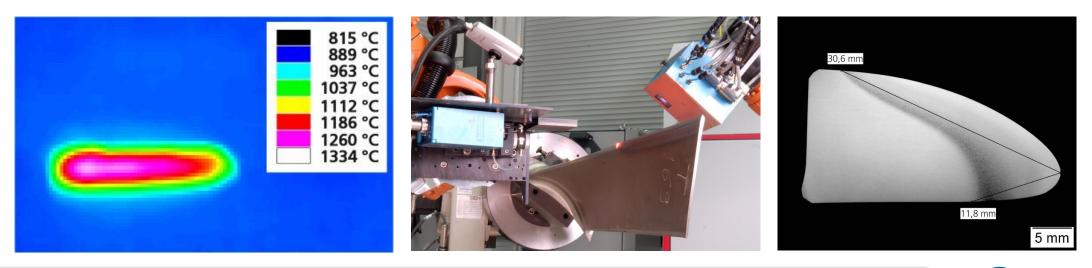

Laser Beam Hardening – Old Laser Technology but Still a Newbee in the Heat Treatment World


Dr. Steffen Bonss

Laser Beam Hardening

Principle

- Steel surface is irradiated with laser beam
- Local absorption of laser energy and heating up
- Growing oxide layer on surface
 - absorption increases from 40% to 80 90%
- Heat flow into surrounding material, heating up of part
- Local overheating is avoided by temperature control
- Dwell time is controlled by feed rate and lser spot size
- Self quenching by heat conduction into the part

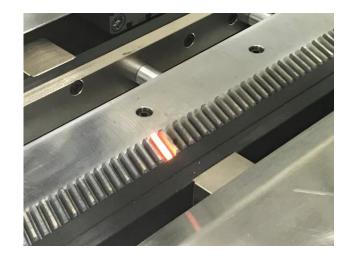


Laser Beam Hardening

Industrial processing

Process optimization

- Always temperature-controlled processes with pyrometers or cameras and closed loop controls
- Optimum surface temperature is defined by the material
- Width of hardening zone is made by laser spot shape
- Penetration of hardening is optimized by feed rate optimization


Different Heat Treatment Procedures

- Feed hardening
 - Example cam piece
 - Rectangular Spot
 - 42CrMo4
 - Process speed about 250 mm/min
 - About 10 kW laser power

- Example steering rack
 - 2 rectangular spots
 - 0.5%-C-steel
 - Simultaneous process with 2 spots
 - About 1.5 s laser on
 - About 2 x 3500 W laser power

- High speed rotation hardening
 - Example hydraulic valve
 - Rectangular spot
 - C45
 - Fast part rotation
 - About 1.5 s laser on
 - About 2000 W laser power

Issues for Technology Transfer

Advantages

- Less distortion, saving of post treatment procedures, saving of costs
- No quenching liquids
- High productivity at integration in manufacturing lines
- Low energy consumption

Disadvantages

- Strong established technologies like induction hardening
- Sometimes material change necessary (replacement of case hardening)
- Lack of heat treatment knowledge if integration in manufacturing lines

Laser Beam Hardening

Influence of Process Parameters and Necessary Devices

- Shape and size of laser spot at work piece surface
 - width and penetration of hardening zone
- Intensity distribution of laser spot
 - adaption to local heat conduction
 - influence on local temperature field and local hardening depth
- Laser power
 - Max. available laser power limits the feed rate (heating rate) or max. temperature
- Feed rate (or dwell time in case of no movement)
 - hardening depth
 - low feed rates can result in lower hardness because of reduced cooling rate
- Shielding gas
 - avoids surface oxidation
 - reduces laser absorption from about 80% to about 40%

- ✓ Optics with specific spot geometry, Zoom-Optics
- ✗ Optics for flexible adjustable 2D-intensity profiles needed for the 2-10 kW cw power range
- ✓ Max. cw power of 50 kW available
- × Optics needed for cw power over 20 kW
- Done by robots or CNC-machines with sufficient precision

✓ Individual design of device necessary

