OEM LASER SYSTEMS AND COMPONENTS FOR DERMATOLOGY & AESTHETIC APPLICATION

ASTRUM

Medical and Aesthetic application of laser

In Today's talk laser technologies for

- Hair removal
- Tattoo removal
- Rejuvenation/peeling/wrinkle
 - reduction
- Vessel lesion treatment
- Gyno

Group profile

Vertical Business Integration

Product 1 OEM 808+760+1060 Hair removal

Standard design features diode

laser inside the handpiece

- selective photothermolysis
- a chromophore and its thermal destruction
- hair keratinocytes and dermal papilla stem cells with no chromophore
- the chromophore for laser epilation procedures is melanin

Product 1 OEM 808+760+1060 Hair removal

- Modular design allows for power and wavelength combinations
- System can combine from 1 up to 12 modules

12 Modules:

760nm (200 W) 808nm (400 W) 1060nm (500 W) in various combinations or by single wavelength

Product 2 Q-Switch/nanosecond laser module

Console design for demo purpose only!

Nanosecond, microsecond and millisecond modes

1064nm 1.7J pulse energy (Q-switch mode)

120J long pulse

532nm 0.7J pulse energy (Q-switch mode)

Spot size 2-10mm Automatic spot size adjustment

Speaker - Sergei Tsarev, CEO at Astrum LT

STRUM

EPIC Online Technology Meeting on Photonics for Dermatology and Aesthetic

OEM gynecology 3.1 / solid state laser module 1064nm OEM gynecology 3.2 / direct diode laser 1060nm

- State-of-the-art technology
- Clinically demonstrated and proved

- Prolapse I-II stage; Vaginal atrophy
- Treatment is based on ablation, heating and coagulation to recharge sensitivity, tightness, also called vaginal rejuvenation – main purpose to stimulate the collagen generation

Lasers in aesthetic gynecology

Laser	CO ₂	Er:YAG	Nd:YAG by Astrum
Wavelength, µm	10,6	2,94	1,064
Absorption in tissue	Strong absorption in water and collagen	Strong absorption in water	Low absorption in tissue components, selective in oxyhemoglobin
Main method	Ablative fractional photothermolysis	Non ablative fractional photothermolysis	Non ablative photothermolysis
Advantages	1) Fast and strong clinical result	 Good clinical result Non invasive procedure; No pain; No anesthesia; Short rehabilitation period; Low risk of complications as burn and fibrous tissue formation. 	 Good clinical result Non invasive procedure; No pain; No anesthesia; Very short rehabilitation period; Risk of complications as burn and fibrous tissue formation practically excluded.
Limitations	 Invasive procedure; Pain; Long rehabilitation period; Significant lifestyle restrictions during rehabilitation; High risk of complications as burn and fibrous tissue formation. 	 Delayed Result; Accumulation effect required. 	 Delayed Result; Accumulation effect required.

NOTE: There is another technique of combining an Er:YAG laser and a 1.5 µm diode laser (DiVa).

It uses the same principle and mechanisms as for a CO_2 laser: ablation (due to 2.94 μ m) + coagulation and heating (due to 1.5 μ m).

More laser modules for medical and aesthetic applications / vessel removal

Yellow laser (583nm), 5J @ 60ms (5kHz)

Green laser (532nm), 5J @ 60ms (20kHz)

Product portfolio

Speaker - Sergei Tsarev, CEO at Astrum LT EPIC Online Technology Meeting on Photonics for Dermatology and Aesthetic

Who is our product for?

- Medical/Aesthetic System integrators
- Research institutions

What we are looking for

- Laser Chip Packaging partners
- High power mirrors
- Medical laser consulting

Thank you!

Astrum LT, UAB June, 2020

tss@astrum-lasers.com