Broadband MIR Sources for Spectroscopy

Reza Salem Thorlabs Laser Division & Kevin Lascola Thorlabs Quantum Electronics

Serving the Intellectually Curious

Sources of Broadband MIR Radiation for Spectroscopy

Thorlabs' Femtosecond MIR Supercontinuum Laser

- Supercontinuum (SC) is generated by propagating a pulsed laser through a nonlinear waveguide (e.g. fiber) to spectrally broaden the pulse.
- SC sources have high brightness and single-mode laser beam quality.
- Thorlabs' MIR SC source:
 - Femtosecond architecture to minimize spectral noise.
 - Pumped using a Tm-doped fiber laser at 2-µm, developed and manufactured by Thorlabs.
 - Soft-glass (fluoride) MIR fiber with transmission out to 5.5 µm enables covering a significant portion of the MIR region.
 - In-house draw process allows accurate control of fiber geometry to engineer fiber dispersion (key to femtosecond architecture).

Thorlabs' Femtosecond MIR Supercontinuum Laser

Specification	Value
Wavelength Range	1.3 – 4.5 µm
Output Power	300 mW (Minimum)
Relative Intensity Noise	< 0.03 % (10 Hz – 1 MHz)
Repetition Rate	50 MHz
Beam Output	Collimated; Single Spatial Mode
Beam Size (Approx.)	Ø5.5 mm (1/e²)

SC4500 Beam Properties:

- Diameter = 5.5 mm
- Circularity > 97%
- M² = 1.11

Broadband Quantum Cascade Lasers (QCLs)

- QCLs are semiconductor lasers with power levels exceeding 1 W and single-mode output beam quality.
- As the emission wavelengths of QCLs are determined primarily by *layer thicknesses* rather than material composition, a broad range of wavelengths is accessible (3.8->12µm)
- Active regions designed for emission at different wavelengths can be cascaded, allowing for high spectral power density over 80-150 cm⁻¹ (e.g. 0.8-1.5µm around 10µm)
- Three compact (40x35x19mm) lasers can cover >2µm with spectral power density ~1-10mW/cm⁻¹

QCL comb spectroscopy – Eliminating the FTIR

- Non-linearities in the QCL cavity can be exploited to tailor the QCL emission to be in multiple phase-locked optical modes
- The beating between these modes can be detected *electrically*, with minimal optical elements and NO moving parts

Partnership Opportunities

- Thorlabs' Broadband MIR Laser Portfolio:
 - Supercontinuum Lasers (fiber based)
 - Quantum Cascade Lasers (semiconductor based)
 - Vertically integrated from laser material development through system integration.
- Opportunities to collaborate with the photonics industry:
 - Explore new spectroscopy applications where broadband lasers can offer significant performance advantage over traditionally used thermal sources.
 - Open-path gas analyzers \rightarrow improved range and sensitivity due to low-divergence laser beam
 - Hyperspectral infrared microscopy \rightarrow improved resolution and faster measurements
 - Near-field imaging systems \rightarrow improved throughput due to higher brightness and better beam quality
 - Dual-comb spectroscopy systems without FTIR → faster measurement time; improved system complexity and size
 - Optimize laser source properties for specific applications.
 - Full access to material development process
 - Ability to tailor device properties
 - System integration for specific foot-print or architecture

