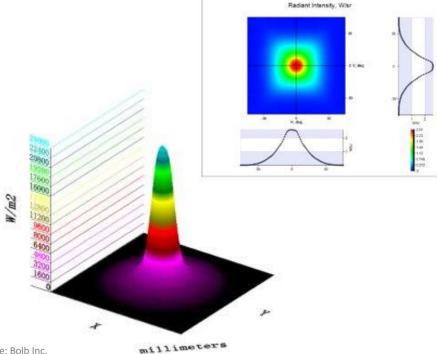


High Power, Robust UVC LEDs for Water Purification

EPIC Online Technology Meeting on Water Quality Monitoring and Purification (in cooperation with IUVA)



Demonstration: Single UVC LED Point-of-Discharge / Faucet Hospital Water Treatment Reactor

Validation Test Results

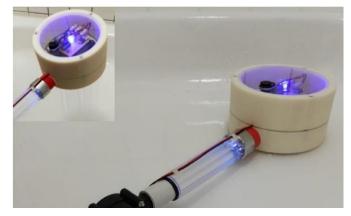
Bolb's Demo Water Treatment Reactor Tests

Flow	Rate	E. Coli Reduction Rate
LPM	GPM	
1.5	0.40	> 99.999%
5	1.32	99.999%
15	3.96	99.75%
20	5.28	97.52%

Rev. 1 Added counts CFU/mL to sample 469654-469657

Source: Bolb Inc.

Rev 1 - Update summary and added Figures 4 and 5.

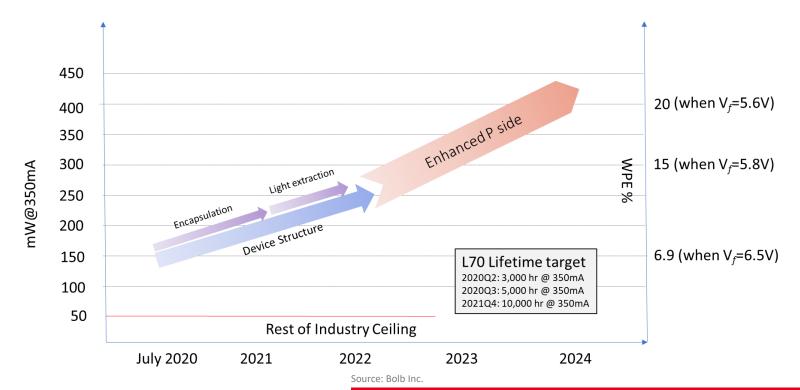

Single 100 mW LED in a Shower Head

- Schmid et al.: 254 nm UVC hg lamp source – Legionella rubrilucens 90% reduction with 1.1 mJ/cm²
- Hessling et al.: using single 100 mW
 LED dependent an angle of emission distribution only 0.01 s required for 90% reduction; or 0.03 sec for 99.9% reduction
- Driven by a water flow turbine

Scheme of a UV-C LED within a Shower Head

Source: Martin Hessling, Ph.D., Professor, Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences

Single Emitter Ongoing Technology Advancement



Source: Bolb Inc.

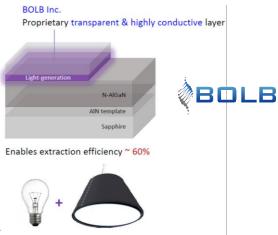
Development Progress



Conventional Design:

non-transparent P layer Very Poor η_{ext} < 6%)

- Low power
- High heat
- Hard to pack densely in array



Breakthrough Design:

transparent P layer and efficient hole injector Excellent η_{ext} (pathway to 60%)

- Low power
- High heat
- Hard to pack densely in array

Your Contact Person

Dr. Olga Stroh-Vasenev

Sales Account Manager

Business Unit Active Components

Mail: o.stroh-vasenev@lasercomponents.com

Phone: +49 8142 2864 48

Mobile: +49 152 09093023

