Challenges for Photonics as 5G Booms

EPIC Online Technology Meeting on Commercial Challenges for Photonics as 5G Booms (in cooperation with COBO)

Fabio Cavaliere

Ericsson

The optical components market

Telecom= wide area networks (WAN), including amplifiers and ROADM Datacom= components for data centers, enterprise, and LANs Access= FTTx and CATV

- The optical components market is a healthy but fragmented market, where competition fosters innovation but also poses profitability challenges
- It is dominated by telecom (moderate volumes, higher cost) and datacom (higher volumes, lower cost) products: where does 5G fit?

2020-12-30 | Public | Page 2

The mobile transport network

5G led to the introduction of a new "mobile transport network" segment, with its own peculiarities

- Short distances, as in access networks
- High capacity and multiple topologies, as in WANs
- New advanced features, such as self-configurable components and low latency transmission and switching.

What does it imply for optical components?

- Potential product volumes are high, as in datacom
- Target cost is low, as in access
- Required features are demanding, as in WAN

5G requires new optical components: the high volumes make the business opportunity appealing but initial investments and risks are big too

• Standardization, multi-source agreements, pilot lines for prototypes, public co-funding are possible tools to mitigate the risk and accelerate the introduction of such new technologies

Examples of new enabling optical technologies for 5G transport

- Self-tunable, multi-vendor interoperable, bidirectional DWDM SFP28 (e.g., based on ITU-T G.698.4)
- Ultra cost-effective bidirectional "grey" SFP28 for very short distances (<2km)
- Cost-effective 100G (400G later) coherent optical interfaces targeting short distances (~20 km)
- High speed (50-200G) direct detection optical interfaces, enabled by:
 - New modulation formats
 - Tunable chromatic dispersion compensators in integrated photonics
 - Advanced receiver architectures
- Small form factor, cost effective ROADMs based on silicon photonics
- Integrated photonics, tunable optical filters, e.g., for WDM overlay over PON

Packaged mini-ROADM

50G reach with a 3 micro-rings dispersion compensator

Prx penalty @ BER = 1E-3

Integrated photonics ecosystem challenges

- Integrated photonics, especially silicon photonics, is a key enabling technology for all those new developments, but ...
 - Multi-project wafers are ideal for proof-of-concept demos but not for products or engineered prototypes
 - No widely accepted standards and design libraries exist for PICs, as for electrical ICs
 - Silicon fabs are reluctant to divert resources on products with much lower volumes than the consumer market, which is their cash cow
 - Skills such us co-packaging with high-speed electrical ICs and III-V/Si integration are not so common yet
 - Different business models exist (see picture) and choosing one is not obvious
- In Europe there is a unique knowhow that could lead to significant industrial impact but more coordination and resource sharing among the various initiatives is needed.

TRL	Short description	Delta cost	"Natural evolution" Industry Mainstream	"Development agreement"	"Pioneer, then drive standards"	"Full custom technology"	"Consortium	"Joint R	&D*
1	Basic principles observed and Technology concept formulated	-							
2	Simulations and feasibility (including first design)	\$							
3	Experimental proof of concept	\$							
4	Technology validated in a research lab	\$							
5	Technology validated in industrially relevant environment	\$\$							
6	Technology demonstrated in industrially relevant environment	\$\$\$							
7	System prototype demonstration in operational environment	\$\$\$							
8	System complete and qualified , ready for product release	\$\$\$\$							
9	Actual system proven in operational environment, ready for product ramp up	\$\$\$\$		•					

