

QKD, Security and the Competitive Advantage

11/11/20 Catherine White, Researcher, BT PLC

EPIC Online Technology Meeting on Quantum Communication & Quantum Key Distribution

Network Security Threats

Implementation flaws affecting RSA and Diffie Hellman

Example, 2017 ROCA attack based on prime number generation computational methods in Infineon chipset ScienceNews

Quantum Computing

Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms

Martin Roetteler, Michael Nachrig, Krysta M. Svore, and Kristin Laute Microsoft Research USA

https://eprint.iacr.org/2017/598.pdf

Possible weaknesses and backdoors

Failures in NIST's ECC standards

Daniel J. Bernstein^{1,2} and Tanja Lange

¹ Department of Mathematics and Computer Science Technische Universiteit Eindhover P.O. Box 513, 5600 MB Eindhoven. The Netherlands tanja@hyperelliptic.org ² Department of Computer Science, University of Illinois at Chicago Chicago, IL 60607-7045, USA dib@cr.vp.to

https://cr.yp.to/newelliptic/**nistecc**-20160106.pdf

Unknown vulnerabilities in new key exchange algorithms that emerge post-2022/3 from NIST PQC program?

Quantum Comms and QKD advantages

Immune to all foreseen and unforeseen advances in

(Information Theoretically Secure)

Potential for **detection of tapping** (even on the data channel if using Quantum Direct Communications. Quantum Alarm)

Network approach a good fit for integration with hardware network encryptors

Catherine White BT

Can be **combined** with other methods of key exchange, and other quantum safe cryptographic functions, e.g for encryption and authentication.

True non-deterministic randomness (QRNGs)

Possibility for **Device Independence**

Replaces Courier

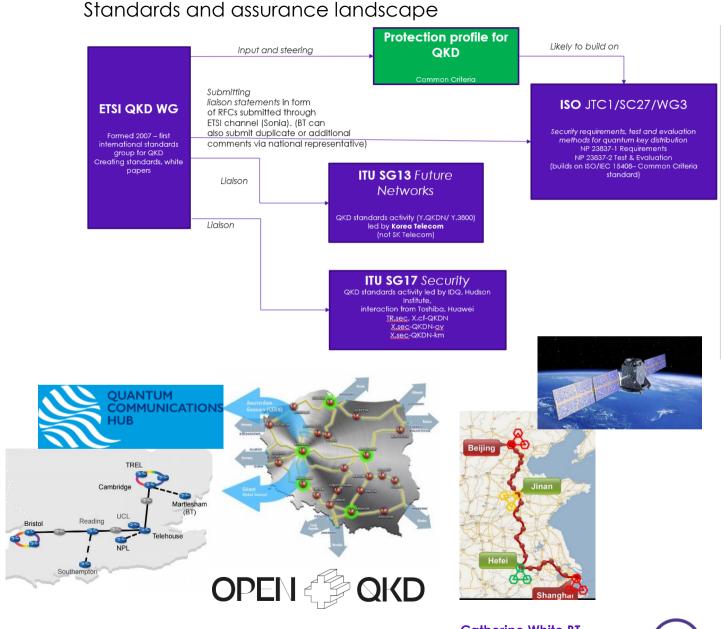
2020 EPIC Online Technology Meeting on Quantum Communication & Quantum Key Distribution

QKD Milestones to Readiness

Standards and Assurance

ETSI ISG Standards

ITU Standards


Assurance: Common Criteria Framework Protection Profile Underway

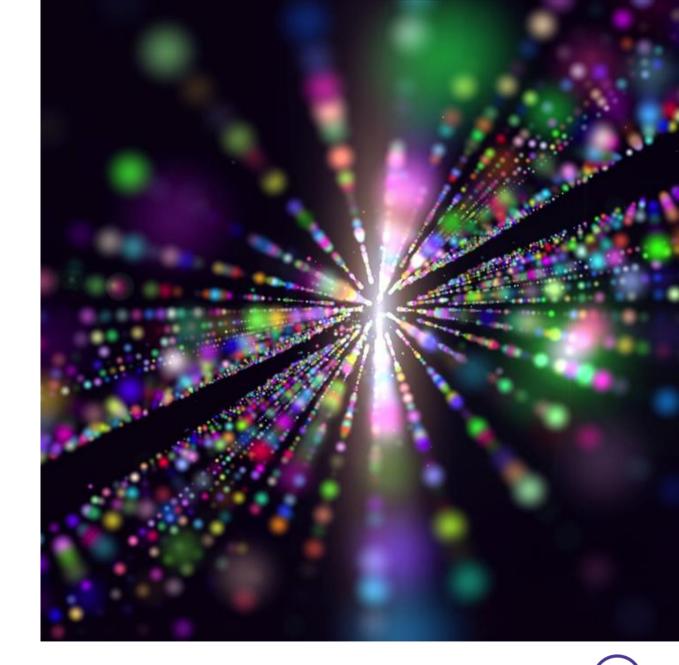
Global Programs, e.g.:

UK Quantum Network and Quantum Comms Hub

OpenQKD – EU Quantum Network

CA, CN, JP, RU, SK, US...

Continued Evolution of Quantum Comms


e.g. ... MDI-QKD Device independent

Untrusted Nodes

Enabling components and technologies...

Photonic Integrated Circuits Improved single photon detectors (low noise, high speed, short deadtime) Single photon emitters Photon counting detectors Entanglement sources Telecoms wavelengths Quantum memories More stable frequency sources

...and of course Cheaper, Better, Faster, Smaller, Lower Power

