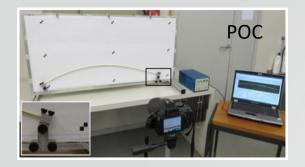


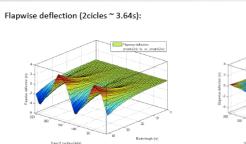
Introduction

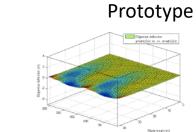
Portuguese-Dutch Startup focused on Wind Turbine Rotor Performance Researched at FEUP – Engineering Faculty of Porto University, Portugal Owner of Fibersail patent pending blade shape sensing technology Backed by Innoenergy, Portuguese and Dutch investors Blade O&M Forum innovation winner 2017

Vision

We believe that Rotor-Load-Controlled Wind Turbines for maximized performance will pave the way for a far more competitive wind industry.




The Journey


3 separate cores measure 3 different strain fields dependent on bend radius of fiber

co-located Bragg gratings in each core

rockstart.

200620162018201520172019IdeaImage: State of the state state

Flap: 0,0% | 40,1%" Edge: 2,8%" | 38,2%" Toreton: 17 Flap: 5,5%| 46,7%" Edge: 2,8%"| 36,2%" Torsion: 0,9"

Flap: 5,5% | 46,1%" Edge: 2,8%" | 38,2%" Tension: 0,8"

core (light guide area)

> cladding (no light)

Problem To Solve

Undetected rotor imbalances causes Underperformance and Extra Loads

Unpredicted failures increases **O&M Costs**

Lack of information makes it difficult for **Lifetime Optimization**

"2019 Wind Turbine global unexpected costs on **repairs and corrections above 7,5B€"** (Source: Wood Mackenzie) "Most Wind Farms have potential for **between 5% to 11% performance** improvements" (Source: Sgurr Energy)

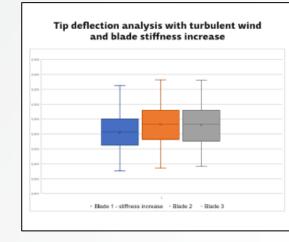
Fibersail Solution

Blade Shape Sensing System

Based on fiber optic technology to measure 3D displacement Independent from OEM blade design

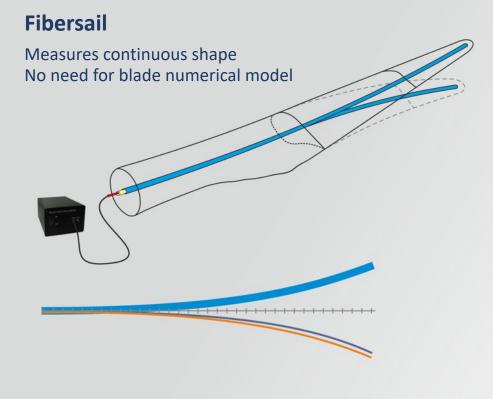
Structural Behavior Analysis


Flapwise and Edgewise displacement measurement Convert the rotor into a giant anemometer



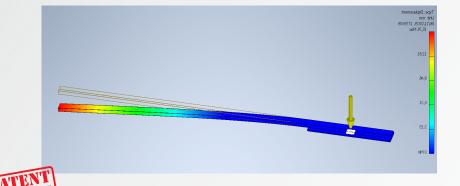
Failure and Wind Pattern Detection

By comparing and analyzing blade deflections Launch alerts and propose corrective actions



Product Differentiation

Current FBG


Measures single point strains Blade numerical model dependent

Fibersail Technology

Shape Sensing Technology

4 Single mode arrays of bend insensitive Polyimid 1250BI (length of blade) 10mm FBGs written in Femtosecond

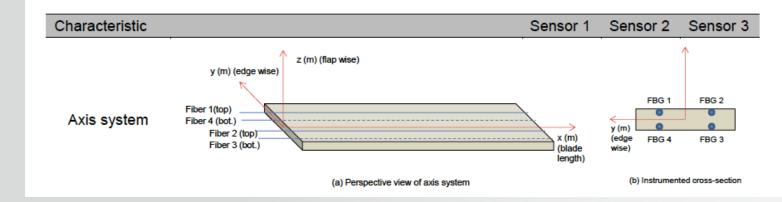
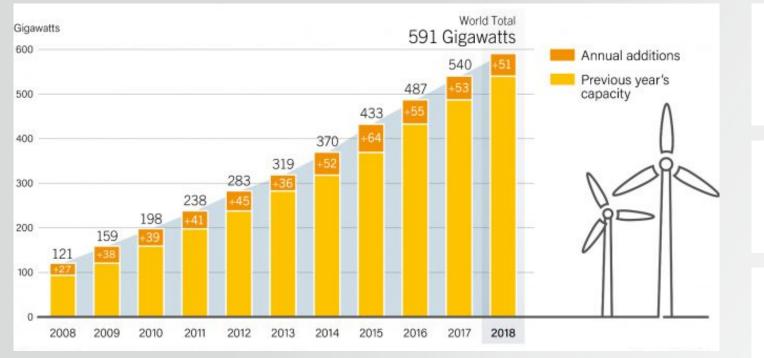


Table 1 - Datasheet of 18 meter length 3D shape sensing sensors


Accuracy	Edge	R ²	1.00	0.99	0.99
		RMSE (m)	0.01	0.02	0.02
		RMSE / L [*] (%)	0.11%	0.18%	0.15%
Reliability	3 sensors	R ²	0.99		
		RMSE (m)	0.02		
		RMSE / L* (%)	0.15%		
Resolution * ²	Edge	Tip deflection (mm)	1.17	1.17	1.17
		Tip deflection / L* (%)	0.01%	0.01%	0.01%
	Flap	Tip deflection (mm)	3.15	3.15	3.15
		Tip deflection / L* (%)	0.03%	0.03%	0.03%
Robustness	Edge	Min. curvature radius * ³ (m)	2.00	2.00	2.00
	Flap	Min. curvature radius * ³ (m)	0.74	0.74	0.74
Durability	Edge wise and flap wise fatigue testing	Cycles (>)	5000000	5000000	5000000
		Years (>)	20	20	20
		n instrumented cross-sections			
* ² Resolution eva	aluated at maximum	tip deflection considering FBG	resolution of	1 micro stra	in

*³ Considering the maximum allowable strain of FBG of 2500 microstrain

ENDING

Market Demand

Wind power global capacity and annual additions, 2008-2018 (source: GWEC)

340.000 Wind turbines in operation in 2018

20.641 New Wind Turbines were installed during 2018

1.200 meters of fiber optic for a 12MW Offshore WT

"If you cannot measure it, you cannot improve it"

William Kelvin