JOANNEUM RESEARCH Technologies for PV

Paul Hartmann 2020-06-26

EPIC Online Technology Meeting Photonics for Solar Energy Systems

Introduction: MATERIALS Institute for Surface Technologies and Photonics

Director:

2

- Paul Hartmann
- 5 Research Groups
 ~ 100 Employees
- 3 Locations in Austria
 - Weiz
 - Niklasdorf
 - Pinkafeld

Hybrid Electronics and Patterning Barbara Stadlober

Light and Optical Technologies Christian Sommer

Laser and Plasma Processing Wolfgang Waldhauser

Sensors and Functional Printing Jan Hesse

Smart Connected Lighting Franz-Peter Wenzl

The problem: optical loss in standard PV modules

3

The solution #1: Light guiding elements on module level

4

The solution #2: Light-guiding Films

- In particular at the edges of PV modules we have a more or less "dead" area
- By the use of light-guiding films, the module area can be exploited effectively

5

Micro-optics with Roll-to-Roll UV-Nanoimprint-Lithography

Optical Simulation

Freeform Design

Maskless Grey Scale Laser Lithography

structures

Mastering of stamp

Step & Repeat

Seamless replication of polymer shim

R2R-UV-NIL

Production of Nano and Microstructures on Film

Mastering Process: Grey scale Lithography

Simulation \rightarrow CAD model

7

<u>Mastering tool:</u> e.g. Grey scale lithography WL=375nm

 min. feature size	200 nm
aspect ratio	1:4
 max. structure	
height (Z)	60 µm
substrate size	6″
writing speed	1 cm²/h

Coloring of industrial solar cells Ag nano-particles on c-Si solar cells

- The colour of industrial c-Si solar cells can be tuned by applying plasmonic effects (Ag nano-particles)
- The plasmonic colour does not depend on angle of observation
- Current losses
- V_{oc} or FF not significantly decreased
- Power loss due to coating \rightarrow less than 10%
- Alternative plasmonic colors could be realized with other materials than Ag

Poly c-Si

Mono c-Si

Funding opportunities for our customers

9

	ACTPHAST4.0	FlexFunction2Sustain	Phabuloµs
	Photonics Innovation Hub	OITB	ICT pilot line
Technical focus	Photonics	Nano-functionalized plastic and paper surfaces	optical free-form microstructures
JR Expertise	Optical design and simulation, Laser based Lithography, Laser Ablation, R2R-UV-NIL, Step&Repeat UV-NIL, Laser and Plasma processing, AFM characterization and White Light Interferometry, Photocurable polymers and inks, biodegradable polymers		
Offered services	Funded innovation projects in Photonics	Materials development, production and testing	Prototype and product development, production processes
Size of project	< €100.000	< €100.000	<€150.000
Homepage	www.actphast.eu		https://phabulous.eu/

Thank you for your attention

JOANNEUM RESEARCH Forschungsgesellschaft mbH

MATERIALS – Institute for Surface Technologies and Photonics

Franz-Pichler-Straße 30 8160 Weiz

Tel. +43 316 876-3000 materials@joanneum.at

www.joanneum.at/materials

