

Trends in c-Si PV ITRPV 11th edition – Laser update & Status Hanwha QCells

Markus Fischer Hanwha Q Cells GmbH, Germany EPIC Webinar, June 26

Outline

- 2. Hanwha Q Cells at a Glance
- 3. ITRPV Outlook

PV learning curve

Shipments /avg. module price at year end:

2018: 109 GWp / 0.24 US\$/Wp **2019:** 130 GWp / 0.23 US\$/Wp

o/a shipment: ≈ 654 GWp o/a installation: ≈ 628 GWp

LR ≈ 23.5 % (1976 2019) LR ≈ 40.0 % (2006 2019)

- → high volume shipped w/ increased product diversity
- → Significant change in module concepts / size
- → Price learning continues

Laser Processes in c-Si Products – examples

2005: Laser edge isolation

2009: TRAQ = QC Laser marking

2011: LFC = Laser Fired Contact

2012: LCO = Laser Contact Opening

2017: Half Cell (Laser cutting) new module challenges

2018: Selective Emitter

202X: what's next for Laser?

Outline

1. Status ITRPV PV Learning Curve / Laser applications

- 2. Hanwha Q Cells at a Glance
- 3. ITRPV Outlook

Global operation: R&D and production sites

Global operation: Our Module Products

Q.ANTUM mass production of mono Si cells (mc-Si stopped)

Evolution of running products: no record efficiencies, but optimized LCOE

HQC module series:

Q.PEAK DUO G8/L-G8 Q.PEAK DUO L-G8.3/BFG Q.PEAK DUO ML/XL-G9

(120/144 half-cell M4) (144 half-cell M4 bifa) → up to 360Wp/430Wp/ 20.0%

→ up to 420 Wp /19.6%%

 $(132/156 \text{ half-cell M4}) \rightarrow \text{up to } 390\text{Wp}/460\text{Wp}/20.6\%$

Learning rate continues

Current average cell efficiency ≈ 23.0% p-Cz pilot-production mc–Si stopped @ 20.5%

Efficiency headroom of Q.ANTUM - p-Cz > 24 %

Zero gap technology

→ higher module efficiency

For efficiency > practical limit of Si

→ new concepts like tandem

Q Cells Product Portfolio 2020

Q.ENERGY

Q.ENERGY

ENERGY RETAIL

SERVICES

more information cloud SOLUTIONS

QCELLS

Engineered in Germany

WWW.q-cells.com

Q.HOME

CLOUD

Outline

1. Status ITRPV PV Learning Curve / Laser applications

- 2. Hanwha Q Cells at a Glance
- 3. ITRPV Outlook

PV today and in future

Different calculated scenarios in 11th edition: *BNEF NEO 2019 Brev*

low: 7.6 TWp/ 9.3 PWh (22% global electricity) market peak:400+GWp / 2050

Breyer ("Electricity")

high: 22 TWp/ 38 PWh (69% global electricity)

market peak: 1,400+GWp /2050

Breyer ("Broad electrification") mix: 63 TWp/ 104PWh (69% global energy) market peak:4,500+ GW/ 2050

→ Shipments 2019 were close to approaches!

ITRPV finding:

- PV learning continues and progresses but market will remain volatile esp. in Corona season
- → Several 100GW markets are ahead, and can be served based on todays PV technologies (also for LASER)
- → Further effort is required to meet x TWp market requirements!

ITRPV will provide also in future guidance to handle the PV challenges

ITRPV | Dr. Markus Fischer | Hanwha Q Cells Page 10 | June 26 2020

Thanks for your interest!

Free download of roadmap & ITRPV presentations at itrpv.org

More Information on Q Cells: www.q-cells.com