

Corporate Information

1956 Founded

HQ Location Anan-Shi, Tokushima, JAPAN

President, CEO Hiroyoshi Ogawa

Main Products Optical semiconductor (LED, Laser)

Chemicals / Phosphors

Lithium Ion Battery Materials

~ 9,400 globally and growing **Employees**

LED's FOR EVERY APPLICATION

Nichia remains the only <u>STABLE</u> LED Manufacturer with the **BALANCE & DIVERSITY across ALL markets**

Corporate Information

Founded 1956

HQ Location Anan-Shi, Tokushima, JAPAN

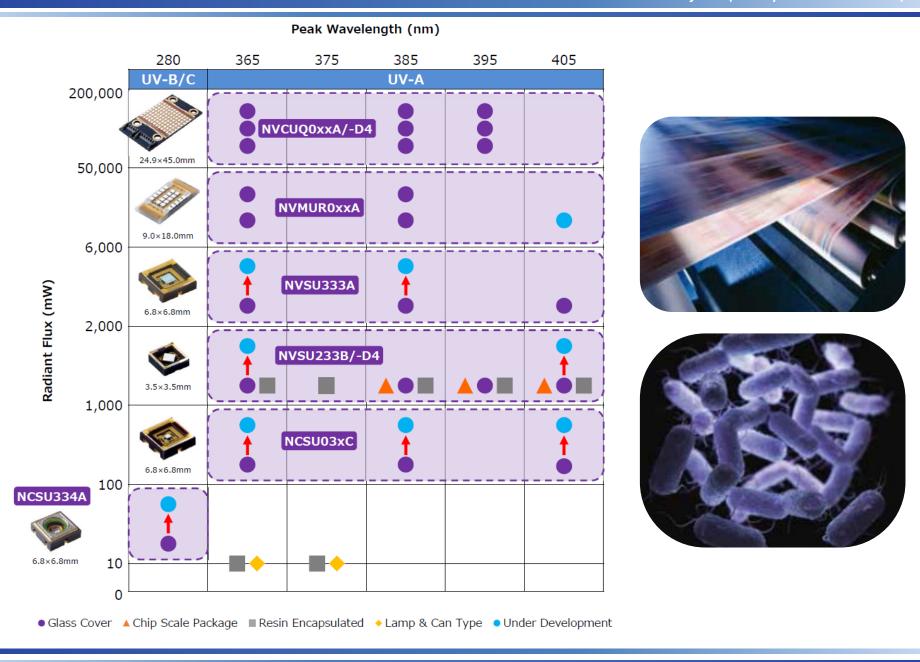
President, CEO Hiroyoshi Ogawa

Main Products Optical semiconductor (LED, Laser)

Chemicals / Phosphors

Lithium Ion Battery Materials

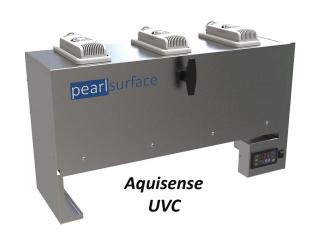
Employees ~ 9,400 globally and growing


LED's FOR EVERY APPLICATION

Nichia remains the only <u>STABLE</u> LED Manufacturer with the <u>BALANCE</u> & <u>DIVERSITY</u> across <u>ALL</u> markets

Nichia's UV Portfolio Snapshot

- Leading efficiency UVC LED
- Hermetically sealed package for superior lifetime and reliability at high temperature / high humidity (L70 25k hours @ ~60°C for 334A)
- 3rd Party disinfection testing data available upon request.


 $T_A=25^{\circ}C$, $I_F=350mA$ (Max. $I_F=500mA$)

Peak Wavelength	nm
Radiant Flux	mW
Efficacy	%
Forward Voltage	V
Directivity	deg.
Absolute Maximum Junction Temperature	$^{\circ}$
Feature	-

NCSU334B
6.8×6.8×2.1mm
280
70
3.6
5.5
120
100
Hermetic Package

*Typical values estimated for Specification release in early September

There are a lot of exciting solutions coming to market with supporting data.

There is not just one way to solve the challenge with UV technology.

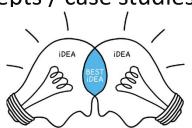
This also is not just one way to fail the technology

While there is promise with Far UV (i.e. 222nm), UV-C can still be very harmful for humans...

False advertising gets nowhere quickly.

UV Technology will succeed in mass disinfection applications.

Let's do it the right way, with an honest approach,


let the technology drive success as it is ready and proven.

https://iuva.org/iuva-covid-19-faq

Requests to Stakeholders / Needs of Nichia

- 1. Take steps in designs to implement safety redundancy
- 2. Test, test and test again that safety measures are functional
- 3. Do not cut corners to take advantage of a short-term opportunity
- 4. Consider all pieces of the puzzle irradiation, time, geometry, targeted organisms...
- 5. Collaboration is critical to prove out new concepts / case studies
- 6. Urgency with a sense of patience.

