

Friday, 5 June 2020, 15:00 CEST EPIC Online Technology Meeting on MicroLEDs Technology and Applications

200 and 300 mm LED epiwafers: Enabling cost-competitive mass production of micro LED displays

5th June 2020, Alexander Loesing EPIC Online Technology Meeting on MicroLEDs Technology and Applications

GaN-on-Si is the key enabler for three fast-growing markets

Only GaN-on-Si allows superuniform, large diameter, CMOS-compatible 1 bin[®] epiwafers needed for largescale micro LED display production GaN-on-Si enables more energy-efficient, less complex and smaller high power electronic (HPE) devices from existing silicon lines

GaN-on-Si provides higher performance, smaller, more energy efficient and lower cost RF devices, for 5G basestations, smart-phones, CATV, IoT and other RF applications

ALLOS* is a leader in GaN-on-Si with more than <u>16 years</u> track-record

ALLOS' value proposition is to license and transfer turn-key GaN-on-Si epiwafer technology and IP

Essential requirements for micro LED achieved by ALLOS

High crystal quality

Same low defect level as on GaN-on-sapphire: TDD ~2 x 10⁸ cm⁻²

= Performance

Large diameter and CMOS ready

- 🖌 200 mm and 300 mm diameter
- < 30 µm bow for 725 µm (200 mm) and 775 µm (300 mm) thickness
- No cracks, no residual strain

= Low-cost

Excellent wavelength uniformity

- Requires perfect conditions for MQW growth...
- ... which cannot be achieved on sapphire - especially not at similar wafer diameters...
- … and needs to be repeatable

= High yield

* Protected by ALLOS' IP; active layers can be the same structure as used by customer for GaN-on-sapphire

Record-breaking emission uniformity < 0.6 nm is achieved on 200 mm GaN-on-Si micro LED epiwafer

Result from customer project on Veeco Propel in February 2019

Excellent reproducibility for emission wavelength uniformity

13 repetition runs with average STDEV of wavelength uniformity of 0.79 nm and all points below 1 nm (STDEV of average value is 0.095 nm)

Result from customer project using the same recipe on Veeco Propel in January 2020

ALLOS Semiconductors

Better area utilization enables huge LED chip cost reduction

= Transfer stamp size (example)

Wafer size [in mm]	Wafer area [factor]	Amount of stamps	Cost advantage
100	1	10	NA
200	> 4	50	> 25 %
300	> 9	128	> 40 %

- Efficient micro LED manufacturing requires usage of a transfer stamp
- Higher transfer efficiency with larger transfer stamp
- Useable area for given transfer stamp is larger with bigger wafers
- This is in addition to all other advantages coming from using larger wafers
- Going to 300 mm gives an extra 15 % more chips than 200 mm (40 % over 100 mm)

300 mm GaN-on-Si growth is <u>NOT</u> the future anymore!

ALLOS' technology is already scaled to 300 mm GaN-on-Si!

Public | EPIC Online Technology Meeting on MicroLEDs Technology and Applications 2020 | 9

Cost and yield effects of ALLOS' 1 bin[®] large diameter GaNon-Si LED epiwafers on the entire production chain

1bin[®] technology:

- Delivers world leading wavelength uniformity which is the most critical LED yield contributor
- Enables up to 300 mm diameter to reduce cost in the following LED production steps
- Provides high crystal quality that is needed to guarantee excellent LED efficiency
- 200 and 300 mm diameter epiwafers from ALLOS enable the use of low cost and high yielding lines for LED chip processing (e.g. depreciated silicon semiconductor line
- Epiwafers fulfil CMOS incoming wafer quality criteria

- Easy bonding of transferwafer to LED wafer thanks to low bow
- Low cost and high yielding removal of silicon substrate (no laser lift off needed)
- Large 200 and 300 mm wafers return much more chips per wafer area when using transfer stamps
- Realize the vision of 100 % LED chip yield to enable mass transfer and minimize repair: Main contributors are 1 bin[®] wavelength uniformity and the high yield level of silicon semiconductor lines
- Cost benefits gained throughout the entire manufacturing chain enable the mass production of micro LED displays

ALLOS' 1 bin[®] epiwafer technology enhances yield and reduces cost

ALLOS' 1 bin[®] GaN-on-Si technology enables:

- Best-in-industry wavelength uniformity for <u>high yield</u>
- 200 and 300 mm LED epiwafers for low cost
- Meeting the performance of GaN-on-sapphire ...

... and all other manufacturing requirements

CSindustry awards

Thank you very much for your attention!

al@allos-semiconductors.com

Alexander_Loesing

ALLOS Semiconductors GmbH Alexander Loesing, Co-founder and CMO Breitscheidstrasse 78 01237 Dresden, Germany

Office: +49-351-212 937-10 Fax: +49-351-212 937-99 Visit us http://www.allos-semiconductors.com

Follow us https://www.linkedin.com/company/allos-semiconductors-gmbh https://twitter.com/ALLOSsemi