

Monday, 27 April 2020, 15:00 CEST EPIC Online Technology Meeting on Surface Structuring

Laser4surf

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768636

User case Laser4surf : Medical implants

Impact of laser texturation on implant osteointegration

Marilys Blanchy, R&D Project manager at RESCOLL Marilys.blanchy@rescoll.fr

Laser4surf: Laser for mass production of functionalized metallic surfaces

Objective :

Development of a Laser texturation of metallic surface for 3 users cases : Medical implants, Batteries and Linear encoders

1) MEDICAL COMPONENTS

Antibacterial properties against mouth infections along with a surface enabling a good biological response by the surrounding tissues will deliver the new generation of dental implants.

asea A

2) ADVANCED BATTERIES

Enhanced adhesion and roughening of the current collector will allow controlled changes in the current collector surface in a very cost-effective and fast way (0.1 min/cm2). It will also improve the electrochemical properties of battery current collectors.

3) LINEAR ENCODERS

Tuning the reflection properties on the scale will make the encoder less prone to misalignments.

Marilys Blanchy, RESCOLL

Osteointegration of medical implants

<u>Clinical/medical Needs :</u> Avoid implantation failure due to wrong integration

Quality of osteointegration dependant of **chemical**, **mechanical** and **topographical** features

Macrotopographic features

 \rightarrow Dependant of the design of the implant

Microtopographic features

→ Mechanical anchorage

 \rightarrow interact with osteoblast

Several methods are used in industries:

- **Chemical surface modification** : acid-etching, anodization or else chemical coating
- Physical modification: sand or grit blasting

Objective of Laser4surf : Development of a Laser texturation of metallic surface for better osteointegration

Marilys Blanchy, RESCOLL

Laser4surf: Laser texturation for the improvment of osteointegration

The objective of Laser4surf is to provide a new surface treatment to:

- Improve osteointegration with pre-defined topographic features
- Be clean and environment friendly
- Be fast and cost effective
- Meet regulatory standard
- Be applicable on small and complex shape

SUL

DENTAL SCREW

aser

Marilys Blanchy, RESCOLL

Laser

Quality of surface

Controlled topography

Homogeneous surface with control of the roughness

Improvement of cell functionalization

Mineralization X2 greater Control of cell orientation

Applicable to complex shape

Marilys Blanchy, RESCOLL

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768636

RESCOLL

Mathilde Napolitan Florent Deliane Konstantin Sipos Marilys Blanchy In vitro tests: CIC1401, CHU Bordeaux, Inserm Univ. Bordeaux Marlène Durand Martine Renard Reine Bareille

CEIT

Aldara Pan Noemi Casquero Miguel Martínez Isabel Ayerdi Santiago M Olaizola Ainara Rodríguez

LASEA

Liliana Cangueiro David Bruneel Jose Antonio Ramos de Campos

