lnec

PHOTONIC INTEGRATED CIRCUITS FOR LIDAR – Solid-State 2D Beam Steering –

MARCUS DAHLEM, PHILIPPE SOUSSAN, XAVIER ROTTENBERG

EPIC Online Technology Meeting | LiDAR Technology and Applications | April 14, 2020

IMEC (founded in 1984)

- World-leading R&D center in nanoelectronics & digital technologies
- International top talent in a unique >2B€ leading-edge fab infrastructure
- 24/7 operation (200 mm and 300 mm)
 cleanrooms (12,000 m²)
- Delivering industry relevant technology solutions in ICT, Healthcare and Energy markets, serving 600+ companies
- >500 M€ R&D budget, 85% direct from industry
- >4000 people (from 90+ countries)
- **HQ** in Leuven (BE) + sites worldwide

SI PHOTONICS PLATFORM @ IMEC

State-of-the-art mature and versatile platform

56G Silicon Mach-Zehnder Modulator

56G Silicon Ring Modulator

8+1-channel DWDM (De-)Multiplexing Filter

56G GeSi Electro-Absorption Modulator

56Gb/s eye diagram

50G Ge Photodetector

50Gb/s eye diagram

Grating Coupler

Edge Coupler

Philippe Absil et al., Optics Express 23(7), pp. 9369-78, 2015

SIN PHOTONICS PLATFORM @ IMEC

A large library of experimentally verified components is available

Fiber-to-WG

Low reflection

Focusing

Basic spectrometers

Multi-mode interferometer

Evanescent coupler

Pseudo-random

ເກາຍດ

LIDAR GENERAL BUILDING BLOCKS

ເງຍອ

ເງຍອ

AUTOMOTIVE LIDAR GENERAL TARGET SPECS

- Sensing depth: 3D mapping
- Range: 100-300 m
- Cost for high volume production: \$100-\$200
- Field of view: 30°-100° (H) × 10°-30° (V)
- Angular resolution: <0.05°
- Power consumption: <50 W
- Weight: <0.5 kg</p>
- Size: < 10 cm × 10 cm × 10 cm</p>
- Samples per second: >>300k (frame rate: 10-30 Hz)
- Wavelengths: 905-940 nm / 1310 nm / 1550 nm
- LiDAR engine: FMCW or ToF
- Beam delivery: Optical Phased Array (OPA)

PHASED ARRAY

- A uniform phase difference $\Delta \phi$ between neighboring antennas results in beam steering
- Far-field radiation pattern is the product of the antenna radiation pattern and the array factor, assuming identical antennas

PHASED ARRAY

- A uniform phase difference $\Delta \phi$ between neighboring antennas results in beam steering
- Far-field radiation pattern is the product of the antenna radiation pattern and the array factor, assuming identical antennas

2D STEERING DEMONSTRATION

2D STEERING DEMONSTRATION

2D STEERING DEMONSTRATION

ເກາຍc

SUMMARY AND OUTLOOK

- 2D beam steering (thermal phase shifting + wavelength tuning) demonstrated in a Si-SiN platform
- Phase calibration essential for high quality beam forming
- Integrated photo detectors for on-chip monitor read-out
- Larger arrays (128 elements and beyond) and 2D lenses
- Main challenges:
 - Insertion loss
 - Power consumption (for phase shifting)
 - Number of antennas (for large aperture size)
 - Electronics control for phase shifters
 - Tight specs on tunable laser (linewidth, power, wavelength precision)
 - CMOS integration desired for complex electronics

ເກາຍດ

SUMMARY AND OUTLOOK

- Related research activities @ imec:
 - Si and SiN hybrid platforms (thick SiN, integrated mirrors, a-Si, etc.)
 - Laser development and gain medium integration on Si/SiN
 - Chip packaging solutions (mode conversion and edge coupling)

- Low-power phase shifters (LC, electro-optic, MEMS-based)
- Integrated PDs (e.g. for FMCW LiDAR engine, on-chip calibration schemes)

Development on Demand:

Feasib stud	pility dy Platform development	Process optimization	IC photonic design	Chip prototyping	Wafer-level testing	LV production	Transfer to HVM	
	WORLD-CLASS INFRASTRUCTURE >12,000 M ² CLEANROOM CAPACITY	CLOSE TO 4,000 SKILLED RESEARCHERS FROM OVER 90 NATIONALITIES	A TRUSTED PARTNER FOR COMPANIES STARTINES & ACADEMIA					
່ເຫາຍດ		MARCUS DAHLEM E	PIC ONLINE TECHNOLOGY MEETING	LIDAR TECHNOLOGY AN	ND APPLICATIONS APRIL 14,	, 2020	14	4

embracing a better life