UNIVERSITY OF TWENTE.

Non-contact imaging for monitoring vital functions and diagnostics using 'smart' technologies

Prof dr ir Rudolf Verdaasdonk

Chair of Health Technology Implementation Prof of Physics and Medical Technology

Biomedical Photonics & Imaging TechMed Center, University of Twente The Netherlands

TECHNICAL MEDICAL CENTRE at the University of Twente

GRAND OPENING TECHMED CENTRE NOV 29TH 2019

UNIVERSITY | TECHMED OF TWENTE. | CENTRE

Intensive Care Units

Operation Rooms

TECHMED CENTRE

ACCELERATE INNOVATIONS TO HEALTH CARE

TECHMED INNOVATION HUB WHAT DO WE DO?

- Support Technology & Knowledge Transfer
- Boost innovation by connecting stakeholders in & beyond the region
- Offer (access to) a wide diversity of services
- Offer access to state-of-the art research facilities
- Stimulate new innovations with funds & voucher programs

Need for non-contact monitoring

- safe for the patient
- overview of area of interest
- no interference with contact sensors
- no obstructing wires
- freedom to move
- no contact artifacts
- 'sterile' no risk for infections
- •

What do we like to monitor?

- Vital functions
 - heart rate
 - breathing
 - perfusion
 - oxygenation
 - temperature

- Discriminate diseased from healthy tissue
 - (pre) cancerous tissue
 - inflammation
 - tissue damage
- Treatment monitoring

Qualitative and Quantitative

Light interaction with tissue

Interaction with tissue changes characteristics of incoming light that is scattered and reflected diagnostics

Interaction with tissue changes the characteristics of light

- intensity drop due to absorption (λ dep)
- direction due to scattering (λ dep)
- wavelength distribution
- wavelength change
- polarisation
- coherence

which 'refect' the characteristics of the tissue

absorbing chromophores in tissue

The contrast in image is enhanced by using the optimal combination of

light source for illumination

sensor for imaging

Control over the wavelength of the light source

- spectrograph
- filter wheel
- tunable LCD
- tunable laser source
- Light Emitting Diodes

increasing grow in number of sensors in smart devices

Number of sensors

extend the wavelength sensitivity of camera sensor removing 'hot' filter

Figure 2. Comparison of Camera Sensor and Human Eye Spectral Responses

Courtesy of Firstsight Vision

Special CCD CMOS Optics

Sony NEXT 5T full spectral camera

wifi camera with tablet control

buy through Ebay astrophotography ghost hunting

your face in UV – VIS - NIR

your face in NIR narrow bands

Short-Wave Infrared Face Images captured when using no filter, or when using band pass filters.

your face in InfraRed vis (0.4-0.7) near (1-3) middle (3-5) far (8-12 μm)

Clinical applications of 'non contact imaging'

Multi spectral Imaging
Oxygenation Imaging
Heart rate monitoring
Vessel Imaging
Thermal Imaging
3D scanning

Understanding Multispectral Imaging

Multi spectral Imaging for the detection of skin cancer

superficial basal cell carcinoma

Multispectral Imaging system with tunable filter

Spectral tunable filter, passes through one selected wavelength.

Lens

Ring shaped fiber-optic illuminator connected to power LED

Light shield

Multi-spectral scan

The skin will show different features at each wavelength / color going through the spectrum from blue to red.

Combination of multi spectral images for contrast enhancement

Creation of a (false) color image from multi-spectral image set

maximum visual enhancement of malignancy

normal color image

false color image

Brain surgery application

Neurosurgery: tumor demarcation

Perfusion / Oxygenation Imaging in skin

Blood (de-)oxygenation spectra

$$\begin{pmatrix} \Delta C_{HHb} \\ \Delta C_{O2Hb} \end{pmatrix} = \begin{pmatrix} \mu H H b_{\lambda 1} & \mu O 2 H b_{\lambda 1} \\ \mu H H b_{\lambda 2} & \mu O 2 H b_{\lambda 2} \end{pmatrix}^{-1} \begin{pmatrix} \Delta O D_{\lambda 1} \\ \Delta O D_{\lambda 2} \end{pmatrix}$$

Multispectral LED source

LED wavelengths bands for oxygenation

multispectral imaging during epilepsy surgery

Imaging oxygenation on brain cortex during epileptic seizure

Imaging the seizure during surgery with a hyperspectral camera

*Herke Jan Noordmans, †Cyrille Ferrier, *Rowland de Roode, †Frans Leijten, †Peter van Rijen, †Peter Gosselaar, ‡John Klaessens, and ‡Ruud Verdaasdonk

Epilepsia, 54(11):e150–e154, 2013 doi: 10.1111/epi.12386

Need for Multispectral Imaging in real time

Multispectral 'snap shot' camera IMEC / Ximea

16 bands Visual25 bands NIR

RGB Sensitivities and Skin

SFA Sensitivities and Skin

Problem with second order peak 'leak'

Figure 5. All filter sensitivity multiplied by the bandpass. Many filters show a second order peak inside the sensitive area. Intended peak wavelength shown above of each filter sensitivity curve.

Correction / calibration needed

Figure 6. Filter sensitivity given by manufacturer [27] from the calibration file (**left**) filter band-passed showing clear second order harmonics, corrected filter after applying the spectral correction (**right**).

A spectral filter array camera for clinical monitoring and diagnosis: proof of concept for skin oxygenation imaging

Jacob Renzo Bauer 1 0 *, Arnoud A. Bruins2, Jon Y. Hardeberg 1 0 and Rudolf Verdaasdonk 3

- The Norwegian Colour and Visual Computing Laboratory, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway, ; jacob.bauer@ntnu.no, jon.hardeberg@ntnu.no
- ² Dept. of Anesthesiology, VU University Medical Center, Amsterdam, Netherlands; a.bruins@vumc.nl
- Dept. of Science and Technology, University of Twente r.m.verdaasdonk@utwente.nl
- * Correspondence: jacob.bauer@ntnu.no;

Academic Editor: name

Version March 28, 2019 submitted to J. Imaging

workflow for SFA MSI

Perfusion and oxygenation imaging during arm clamp and release

Figure 8. Oxygenation estimation from spectral reflectance cube.

Visualization of oxygenation changes of the hand

0 sec 20 sec 40 sec 60 sec 65 sec

Point measurement in image

, Article

An Evaluation Framework for Spectral Filter Array Cameras to Optimize Skin Diagnosis

Jacob Renzo Bauer 1,* , Jean-Baptiste Thomas 1 , Jon Yngve Hardeberg 1 and Rudolf M. Verdaasdonk 2

The filter set of Spectral Filter Array cameras needs to be optimized for specific clinical applications

SkinSim - SkinRefl.

Thermal Imaging new camera development

cooperation with FLIR and Xenics leading thermo camera companies

- Smart phone add-on
- FLIR-ONE
- Apps
- Only ~300 €

Methods to apply thermography

- 'static' temperature distribution
- dynamic temperature change during time
- dynamic temperature change after controlled intervention

Example non-effective anesthetic block of hand

Thermographic skin temperature measurement compared with cold sensation in predicting the efficacy and distribution of epidural anesthesia

Arnoud A. Bruins¹ · Kay R. J. Kistemaker¹ · Annemieke Boom² · John H. G. M. Klaessens³ · Rudolf M. Verdaasdonk³ · Christa Boer¹

Received: 15 December 2016 / Accepted: 28 April 2017 © The Author(s) 2017. This article is an open access publication

J Clin Monit Comput

Detection of degree of burn comparing perfusion and thermal image

Insights into the use of thermography to assess burn wound healing potential: a reliable and valid technique when compared to laser Doppler imaging

Mariëlle E. H. Jaspers, a,b,c,d,e,* Ilse Maltha, John H. G. M. Klaessens, Henrica C. W. de Vet, G. M. Verdaasdonk, and Paul P. M. van Zuijlen, b,c,d,e

Dutch Burn Centre Beverwijk

Dermatology allergy testing

- Fluids drops on skin with potential allergens
- Puncture in drop for passage through epidermis
- 15 minute waiting before reaction rating by dermatologist (blinded for allergen)
- rating based on skin color and touch
- Quantitative ?
- Sensitivity ?
- Can thermo imaging improve

Time-lapse 15 minutes allergy reaction

Grading allergy reaction

Boxplot time 15 minutes

Respiration monitoring

- breathing
 - Nostrils
- temperature distribution
 - head
 - hands, feet

Results respiration rate

Results

Difference < 3% (n=7) < 20% (n=1)

Other applications under investigation

- Cardiology: prediction of spasm of the artery
- Carotid condition
- Urology: cause of impotence after radical prostatectomy
- Surgery: colon leakage
- Tumor detection
- Sport: training, injury
- Diabetes foot (open wounds)
- Decubitus

Heart Rate Monitoring (MIT*)

Based on color changes of skin caused by blood flushes by heart pumping

Neonatology HR ~ 120 BPM apply band pass filter 1.6 - 2.4 Hz

^{*} Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Fredo Durand and William T. Freeman, Eulerian Video Magnification for Revealing Subtle Changes in the World, ACM Transactions on Graphics (Proc. SIGGRAPH 2012)}, 31,(4)

Processing color videos for heart rate

Iphone / Ipad App

- Philips Vital Signs camera
- Special algorithm for subtle color changes
- Verkruysse, W., et al. Opt. Express 16, 21434-21445 (2008)
- Aarts, L.A. et al. Early Hum. Dev. (2013)
- http://www.vitalsignscamera.com/

Video Near IR HD surveillance camera Video Pulse Oximeter 15 Time (s)

Heart rate monitor

Room light

NIR light

Results

Accuracy depending on skin tone using NIR

MRI setup

- Camera in control room
- Camera: Panasonic TZ3
- Distance 5 6 m
- Light source
- Head Coil with mirror

MRI monitoring

Video based non-contact heart rate monitoring is possible independent of light conditions and skin color using NIR light and has

Potential for many applications:

- baby monitoring
- surveillance of elderly,
- patients in medium care or
- during MRI or CT diagnostic procedures

Vein punctures can be challenging

Especially in children:

- baby fat
- dark skin color
- vessel deviations due to illness
- repeated punctures

Development of vessel viewing system

- IR sensitive CCD
- LCD display
- IR blocking filter
- IR LED
- articulated arm

Veins in the hand

Normal vision

NIR vision

Visualisation of micro vessels

Results effectiveness venipuncture

Percentage of failure rate and time > 15 s

'The VascuLuminator'
'navigation device'
to find blood vessels
for puncture

Near IR fluorescence guided surgery

(from review NIRF Image-guided surgery AL. Vahrmeijer et al.)

Low cost NIRF imaging system using consumer components

Pulsar Laser IR 150mW 785nm flashlight

Sony NEX 5T (full spectral adapted)

NiteCore CI6
3W, 850nm flashlight

Development NIR fluorescence phantom for testing/validation camera systems

- Intensity range nW-mW
- 6 mm uniform fluorescence spot

Results: tissue transmission

NIR fluorescence in-vivo imaging setup in practise

NIR fluorescence in-vivo imaging setup

CW800 labeled tumor grown in the belly of a mouse

Using a 850nm LED flashlight, the mouse itself and environment becomes also visible

'The VascuLuminator'
will be adapted to NIR
fluorescence imaging
for image guided
surgery

3D Printing and Scanning

Diagnostics

- Growth defects
- Abdominal shape
- Lung volume
- Melanomas

Monitoring

- Fitness and diet
- Obesity
- Diabetes

Treatment

- Scoliosis
- Prosthetics
- Burns
- Facial reconstruction

3D scanner Artec Spider

Comparison 3D scanners

Artec Spider

Sprout HP Sense

Vectra M3

Comparison study

[mm]

2.00

1.50

1.00

0.50

0.00

-0.50

-1.00

-1.50

-2.00

-2.36

Quantification of cutaneous allergic reactions using 3D optical imaging: A feasibility study

Skin Res Technol. 2019;00:1-9.

Mark D. den Blanken¹ | Sebastiaan van der Bent² | Niels Liberton³ | Matthijs Grimbergen¹ | Mark B. M. Hofman¹ | Ruud Verdaasdonk⁴ | Thomas Rustemeyer²

SEXUAL MEDICINE

TRANSGENDER HEALTH

Gender-Affirming Hormone Treatment Induces Facial Feminization in Transwomen and Masculinization in Transmen: Quantification by 3D Scanning and Patient-Reported Outcome Measures

Marieke Tebbens,¹ Nienke M. Nota,¹ Niels P. T. J. Liberton,² Brigitte A. Meijer,³ Baudewijntje P. C. Kreukels,⁴ Tim Forouzanfar,³ Rudolf M. Verdaasdonk,² and Martin den Heijer, MD, PhD¹

Latest development: Smart phone based 3D scanner

New study 3D scanning breast development

Setup with Iphone X as 3D scanner

How to raise public awareness of damaging effect of UV light ?

Confronting people by showing UV skin damage

- showing effect of protection by sunscreen
- inspiration by youtube video
 'How the sun sees you '
 by photographer Thomas Leveritt

Design of UV imaging system 'Magic Mirror'

camera control with smartphone/tablet

Examples 'young faces'

Examples 'old faces'

Effect of sun screen

Public Awareness Activities Skin cancer day Marathon Amsterdam Open air festivals

Patients with Vitiligo UV visualisation of the distribution of the patches

The ultraviolet light camera, a promising measurement instrument for lesion assessment in Vitiligo, a study on image quality, validity and reliability.

SE Uitentuis¹, MN Heilmann¹, RM Verdaasdonk², JM Bae³, RM Luiten¹, A Wolkerstorfer¹, MW Bekkenk¹

¹ Netherlands Institute for Pigment Disorders, Department of Dermatology,

Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands

(submitted)

Table 1 Quality scores for images of vitiligo lesions made with a conventional camera and UV camera

	Overall image quality: frequency (%)				
	Very poor	Poor	Average	Good	Very good
Vitiligo experts					
Conventional camera	4 (6.5%)	11 (17.7%)	31 (50%)	13 (21%)	3 (4.8%)
UV camera	0 (0%)	0 (0%)	0 (0%)	12 (19.4%)	50 (80.6%)
Medical interns					
Conventional camera	5 (8.1%)	15 (24.2%)	25 (40.3%)	15 (24.2%)	2 (3.2%)
UV camera	0 (0%)	0 (0%)	0 (0%)	25 (40.3%)	37 (59.7%)

Monitoring with Imaging technologies

- Vital functions
 - heart rate +
 - breathing +
 - perfusion +
 - oxygenation +
 - temperature +
 - physiological changes in time +
- Discriminate diseased from healthy tissue
 - (pre) cancerous tissue +
 - inflammation +
 - tissue damage +
- Treatment monitoring +

Qualitative + and Quantitative +

Conclusions

- None-contact imaging techniques prove to be successful in a wide range of applications.
- They can easily be introduced in the clinic with approval of ethical committee since the risk for the patient is minimal.

Future Perspective

Besides the many potentials in the hospital, handheld 'smart cameras' should become standard equipment in the office of general practitioners

Acknowledgements

John Klaessens

Jacob Bauer

Herke Jan Noordmans

This presentation was presented at EPIC Meeting on Photonics for Cancer Diagnostics and Treatment 2019

