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Clinical Raman Spectroscopy 
– going beyond diagnosis…

Prof Nick Stone     Chair of Biomedical Imaging and Biosensing

NHS Consultant Clinical Scientist
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Histopathology 

Relative Sampling Volume =0.5% 

1mm2 

1 in 200 chance of finding microscopic lesion 

Early diagnosis is vital 1 in 2 will get Cancer
1 in 4 will die from Cancer

Barrett’s 
oesophagus… 

Dysplasia... Cancer...

Survival can be 10% at 5 years for advanced disease.



The proposed solution: 

• Objective measure of disease specific molecular changes using light.

• In vivo, rapid, non-destructive.

Will provide:

• Biopsy targeting

• Potential for targeted therapy of dysplastic lesions

• Real-time diagnosis and detection
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• Molecular fingerprint of cells or tissues. 

• Rapid, non-destructive

• Reproducible: systems / centres / users. 

• Can exceed performance of independent pathologists 

• Prognosis possible [Kendall 2011, Crow 2004] 

RAMAN DIAGNOSTIC PLATFORM TECHNOLOGY
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Raman diagnostics
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Prostate cell lines
Androgen 

sensitive

Androgen sensitive 
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 BPH Prostatitis CaP 
(GS<7) 

CaP 
(GS=7) 

CaP 
(GS>7) 

Totals 

No. of 
Samples 

33 2 11 5 5 56 

No. of 

Spectra 
381 34 231 111 114 871 

 

In vitro prostate model 

– grading disease

 

BPH Prostatitis Cancer 

Sensitivity 92% 100% 85% 

Specificity 93% 94% 98% 

BPH Prostatitis Carcinoma

BPH 350 21 10

Prostatitis 0 34 0

Carcinoma 34 33 389
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The Prediction Power of the Five Group Algorithm
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Score =7 
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Sensitivity 89% 100% 74% 83% 89% 

Specificity 95% 95% 97% 96% 98% 
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DNA 

glycogen 

cholesterol 

Collagen 1 

triolene 

actin 

lycopene 

oleic acid 

Biochemical Tissue Constituents

          BPH     P’titis   CaP: <7    =7       >7 
Gross biochemistry of sample volume
- Can be fractions of cells to many cells
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20 gauge needle

0.6 mm I.D.

0.9 mm O.D.

Day and Stone, Applied 

Spectroscopy 2013.
Smart Raman Needle
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Mean corrected spectra obtained from lamb and chicken tissues 
using the 100 µm probe in t=10s (24mW). 

 

Day and Stone, Applied 

Spectroscopy 2013.
i4i Feasibility study
12 months 2011
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Mean spectra from 
4 locations within 2 nodes of +ve
4 locations within 2 nodes of –ve
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The Raman smart needle

Laser

Needle probe

Spectrometer15
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Interpretation 

software

Ultrasound

“an intelligent 

optical biopsy at 

the tip of a needle, 

in real-time”
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Ok – what about beyond 
diagnosis?

Surgical decision making / Prognosis / Monitoring treatments…
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Pathology

Raman

Gloucester Royal

Dudley Hospital

Raman probe for axillary nodes

Standard 
Assessment
Clinical Mx

Recruit 300 patients – sentinel+ lymph 

nodes

Horsnell et al., Analyst, 
2010, 135, 3042–3047

Key peak differences 
(in metastatic nodes) 
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Mean spectrum per node 

t=12s x 5 



	

Clinical context: Improve surgical decision making, 

specificity must be near 100% and sensitivity good to 

enable the majority of metastatic nodes to be 

identified during surgery and those that are missed 

will be picked up with later histopathology and 

require reoperation.

Technique Sensitivity Specificity

Frozen Section 

Analysis

57-76% 99%

Touch Imprint 

Cytology

33-81% 95-99%

Molecular Assays 87-96% 92-97%

Raman BWTEK 
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85-94% 96-99%
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Mammogram – calcifications 
Often the only sign of malignancy

Benign Malignant

They are found in:  10% of women aged 25-29 years
86% of women aged 76-79 years.
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Breast cancer – who should we treat?
• 55000 cancers per annum UK - 464K EU / 1.68M worldwide (2012)

• 15K Cancers detected with mammographic screening – from >2M screening tests per year

• 40K Cancers detected by ‘finding lumps’ from 400K women presenting with lumps

• 95% (>7500) of DCIS identified with mammography

• Incidence rates for breast cancer in the UK are highest in people aged 90+ (2013-2015).

• 87% of women survive 5 years / 11,400 breast cancer deaths in the UK per year (2014-16).

• Around 491,300 women who had previously been diagnosed with breast cancer were alive in the 
UK at the end of 2010.

https://www.cancerresearchuk.org/health-
professional/cancer-statistics/statistics-by-cancer-
type/breast-cancer#heading-Five
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Hydroxyapatite lattice structure showing arrangement of the two types of calcium ions (Ca 2+

I and II), phosphate (PO4
3- ions(P) and hydroxyl ions (OH-))                                                                                                                           

Type II calcifications – calcium hydroxyapatite

Carbonate ions

A-type – OH- substitution

B-type – PO4
3- substitution

http://www.exeter.ac.uk/


• Paraffin-embedded sections (110 patients) and 
deparaffinized (15 of the same patients): samples 
collected from archives of patients undergoing 
biopsy

• Blocks cut to 7µm thickness and mounted onto 
CaF2 slides

Mid-FTIR spectroscopy of Breast Calcifications:
Composition of calcifications varies with pathology 

236 calcifications

DCIS
Cancer Benign

60
64

112

--- Malignant --- Benign

Baker et al., BJC 2010
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Sample illustration of transformation of calcifications during disease progression. 

→transformation to advancing pathology grades starts in the periphery.

SVM image prediction – trained on mean spectra
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July 2017 – June 2022
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Exploring Deep Raman for Advanced Screening for breast cancer

• Improve the rate of detection
• Improve survival rate
• Reduce overdiagnosis
• Enable non-invasive monitoring of those with early disease 
• Enable non-invasive monitoring of those undergoing treatment

Dr Ben Gardner Dr Adrian Ghita

Prof Pavel Matousek

£1.2M EPSRC
Mr Douglas Ferguson
& Miss Charlotte Ives
RD&E NHS FT
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How can we use this for in vivo diagnostics?
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Advanced Transmission Raman Spectroscopy: A Promising

Tool for Breast Disease Diagnosis

Nicholas Stone
1

and Pavel Matousek
2

1Biophotonics Research Unit, Gloucestershire Royal Hospital, Gloucester, United Kingdom and 2Central Laser Facility, Science and
Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom

Abstract

A novel approach to noninvasively probe the composit ion of

endogenous mater ials concealed deeply within mammalian

tissue is presented. The method relies upon transmission

Raman spectroscopy and permits the detailed character iza-

tion of the chemical composition of the probed volume. The

technique has been enhanced by the deployment of chemo-

metr ic methods and the use of a dielectr ic optical element at

the surface to force escaping photons back into the tissue and,

thus, enhance the relatively weak signals from the deeper

tissue and its components. This permitted reaching both the

clinically relevant depth and sufficient sensit ivity in phantoms

for the noninvasive identification of the calcification types

associated with benign or malignant breast disease. Both

calcium hydroxyapatit e and calcium oxalate monohydrate

have been chemically identified from depths of up to 2.7 cm

within a breast phantom made up of porcine tissues. The

technique has shown significant potential for probing human

breasts to provide complementar y data in the early diagnosis

of breast cancer. [Cancer Res 2008;68(11):4424–30]

Introduction

Mammography can detect small masses, areas of distortion, ill-

defined densities, and microcalcifications not detectable by

physical examination. However, contrast is dependent only on

the morphology and density of the specimen, not the chemical

constituency. This limitation means it gives no definitive criteria

for classifying benign and malignant calcifications, and as such,

only 10% to 25% of mammographically detected lesions are found

to be malignant upon needle biopsy (1, 2). Calcification

appearance on mammography is a feature of a proportion of

breast cancers, and its occurrence does not correlate with either

age or primary tumor size. It has been shown by Holme and

colleagues (1993; ref. 3) that a significantly larger number of

lymph nodes are involved in patients with tumors showing

microcalcifications than those without. This suggests a biologi-

cally significant role for the deposition of calcium in micro-

calcifications that may relate to the process of tumor cell

metastasis. As such, determining the relationship between micro-

calcifications and tumor cell metastasis is regarded as a high

priority to aid the assessment of patients with cancers that show

microcalcification on mammography.

Microcalcifications can be divided into two types of deposits:

type I, which consist of calcium oxalate dihydrate (COD), and

type II, which are composed of calcium phosphates, mainly

calcium hydroxyapatite (HAP). The type of deposit has been

correlated with disease (4). Calcium oxalate crystals are mainly

found in benign ductal cysts and rarely found in carcinoma,

whereas HAP deposits are found within proliferative lesions,

which include carcinomas. At present, there is no reliable way to

distinguish between these two types of calcification by mammog-

raphy. However, the calcifications can be distinguished from their

chemical makeup by using vibrational spectroscopy (IR spectros-

copy or Raman spectroscopy). Although, to be truly effective

in vivo, any technique should be able to be used transcutaneously,

so as to enable a quick and simplistic diagnosis of breast lesions,

thus minimizing the patient trauma, time delay, and high medical

costs of biopsies. Here, we explore the possibility of the use of

advanced near-IR transmission Raman spectroscopy to achieve

this goal.

Raman spectroscopy uses the molecular-specific energy shifts in

inelastically scattered light. The optimum wavelengths for Raman

tissue work have been shown to be in the near-IR region of

between 785 and 840 nm. This represents a compromise between

minimizing interference from fluorescence, which usually swamps

the weaker Raman signals, and working within the spectral region

where highly sensitive charge coupled detectors (CCD) can be used

to detect the low levels of Raman photons (5).

The use and sensitivity of Raman spectroscopy as an analytic

technique capable of distinguishing between normal and malignant

breast tissues (1, 6) and between different pathologic grades of

breast and other epithelial tissues has already been established

(7–13). Furthermore, it has recently been shown that Raman

spectroscopy is capable of distinguishing between the two types of

calcification in excised breast tissue with a high degree of accuracy

(4). However, it is currently unclear whether the Raman technique

can be applied to detect and distinguish microcalcifications in vivo

and nondestructively.

Advanced depth probing with Raman. Previous work by

ourselves and others has shown the potential for depth probing in

biological tissues, by effectively suppressing the relative signal level

from the surface and, thus, enhancing the relative signal level from

the depth of interest (14–20). A number of approaches have been

used, ranging from time gating of the collected signal (Kerr-gating)

after a picosecond laser pulse, to spatially offsetting the point

of collection from the point of illumination (SORS) and to

transmission Raman spectroscopy, which has thus far achieved the

deepest penetration depth into biological tissue. In this study,

a novel step to significantly improve on the earlier transmission

Raman approach wastaken by useof adielectric filter on thesurface

of the tissue to enhance the Raman-scattered signal obtained from

deep within the tissue. Thediffusenatureof photonspropagating in

tissue prevents focused delivery and collection of laser light to a

Note: Supplementary data for this article are available at Cancer Research Online
(http:/ / cancerres.aacr journals.org/ ).

Requests for reprints: Nicholas Stone, Gloucestershire Hospitals NHSFoundation
Trust/ Cranfield University, Great Western Road, Gloucester, GL1 3NN, United
Kingdom. Phone: 44-0-8454-225486; Fax: 44-0-8454-225485; E-mail: n.stone@medical-
research-centre.com.

I 2008 American Association for Cancer Research.
doi:10.1158/0008-5472.CAN-07-6557

Cancer Res 2008; 68: (11). June 1, 2008 4424 www.aacrjournals.org
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(ii)

(i)

1% IL and 0.2 μl/ml ink (μs’=9.22 cm-1, μa’=0.219 cm-1)

Distance from the illumination side in mm

Optimising 
Wavelength

Laser Raman

scattering

EPSRC Grant:  
optimise performance / develop prototype 

Extrapolate power density (x20) 

• 100mW in 2mm spot = 31mW.mm-2 

• 900mW in 6mm spot = 31mW.mm-2 

• 2000mW in 9mm spot = 31mW.mm-2 

Open up slits (x10) and change grating 
 

Mark II: x200 throughput 
   x14 SNR 

à    3x2s acquisition? 

Not actual spot size! 

	

Assessing the 

sampling 

regions
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Sample	No.3:	4-4.2cm,	1.7-2.2	cm	laser	spot,	2W	laser	power		

L.O.D.=3.3S/ (where S is slope of the plot and  standard fit residuals.)

38.28 mg or translating this back to relative volume (using HAP density) we get: a relative 
volume L.O.D. of 0.08% through 40 mm vs 0.125% in 20 mm (Cancer Research 2008)

New optimised system @ 808nm

HAP detection limit in 4 cm porcine tissue

Difference spectra

Ghita, Matousek, Stone, J Biophotonics 2017
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Position 1 Position 2 Position 3 Position 4
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Colour photo X-ray

Hybrid image
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Progress – Deep Raman Breast (RD&E)
• Optimised system for ex vivo samples

• Ethics approved

• Ex vivo sample collection ongoing @ RD&E
• around 120 to date.

• Aim for n=200.

• Develop in vivo device based on findings

• MHRA/ethics

• Recruit patients for first in human studies to measure Raman non-
invasively in vivo
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T
Theranostics

N
Nano

Ra
RamanRaman Nanotheranostics – RaNT

developing the targeted diagnostics and therapeutics of the future by combining 

light and functionalised nanoparticles.
£5,752,646 EPSRC
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Summary
• The future is bright for light based cancer diagnostics and targeted therapies.

• Raman can provide real-time, minimally invasive, objective, molecular analysis 
of disease & monitoring of treatments. 

• Calcification composition and microstructure may indicate more susceptibility 
to progression.

• Can they predict a patient’s future? – watch this space…
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2
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RAPIDE – Raman Prediction of Pathology 
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Low Risk  

High Risk  

Press	to		
Analyse	

Patient no.: 01248568909 

Patient name: Barry White 
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