Accelerating the future

Dr. Ir. T.A.H.M. Scholten
Friday, November 8, 2019

Customized High Volume Testers for Wafer Level Optics

- DOE and MLA test parameters
- Configuration of an optical wafer tester
- Some challenging topics:
 - Pattern imaging (optics)
 - Laser module: Single versus multimode
 Working distance & beam quality

NTS: First-tier systems supplier of (opto) mechatronic systems and mechanical modules

- Build-to-print and build-to-spec
- High complexity products
- Low volume manufacturing
- High mix of product diversity

Eindhoven

Headquartered in Eindhoven,

€ 270+

Million turnover

1700+

Employees worldwide

70+

Years of experience in manufacturing industry

the Netherlands

NTS' global presence

NTS

- Development & Engineering,
- Precision Components,
- Precision Frames & Cabinets,
- System Integration

NTS Optel: Development and manufacturing of <u>custom</u> opto-mechanical systems

- Ray-tracing and opto-mechanics ensuring best optical performance
- Optical tooling enabling industrialization of your metrology solution
- Opto-mechatronic systems custom, integrated turn-key inspection solutions
- Extensive team of highly qualified and experienced design and assembly engineers
- Design and build turn-key, one-off systems and prototypes
- In-house small and medium series production

ISO 9001 and ISO 13485 certified

NTS Optel competences

We use ray tracing for our optical designs

And apply all imaginable optical techniques:

- Vision techniques
- Laser triangulation, distance and 3D-measurement
- Laser and white light interferometry
- Laser diffraction
- Spectroscopy

from EUV, UV, visible, NIR to IR.

Add the electronics:

- Analog and digital electronics design
- Embedded software

We design and build the mechanics

And implement software for processing, control and GUI

Thus, we provide complete solutions!

Some optical devices and systems

UV beam homogenizer

Customized (high volume) testers for optical wafers

DOE/MLA spot generators

Beam shapers/homogenizers

Typical test parameters

- Relative zero order power
- Occurrence of hot-spots
- Total diffraction efficiency
- Horizontal and vertical diffraction or refraction angles (FOV)
- Relative spot or line powers
- Pattern contrast
- Spot and line quality in terms of FWHM
- Homogeneity over spot profile or diffusor profile
- Low and high frequency inhomogeneity of diffusor
- Whatever other parameters customers would like to test....

Basic optical wafer tester layout

Filter Fan Unit

Technical challenges

Pattern imaging optics:

- Cover a large FOV (up to 150°) with sufficient resolution
- Low sensitivity drop-off and distortion over the FOV
- Tolerant in wafer surface location
- Sufficient working distance

Laser module:

- Accurate center wavelength
- Stable operation
- Spot size fitting the active area
- High beam quality

Optical wafer tester:

direct imaging (conoscope) and rear projection imaging

Optical wafer tester:

front projection imaging

Comparison pattern imaging optics

Laser module design

Customer requirements:

- Wavelength (630/850/940nm)
- Single mode (/multi mode)
- Beam: Collimated/focused/VCSEL mimic
- Profile: top-hat / (truncated) Gaussian
- Spot size: illuminate active area
- Polarization state

Our additional requirements:

- Working distance (for chuck clearance)
- Beam quality at wafer
- Stable operation
- Laser safety
- Controllable
- Modular and flexible

Laser RF modulation

Laser spot quality and power confinement at wafer

Simple calculation:

- Typically 10mW laser power at DUT
- Diffracted in 10k beams → <1µW per spot
- Scattering passing the active area ends up in ZO position
- This should be < 0.01% to remain below the 1µW

Laser working distance and spot quality

Last section of the laser module:

- Aperture:
 - to truncate the laser beam
 - to illuminate only the active area of the DUT
- 4F relay optics:
 - to image the aperture at the wafer level
 - to create sufficient space for the wafer chuck to move in between (50-100mm)
 - To control and confine any unwanted scattering

Laser beam to mimic VCSEL profile

The collimated configuration is generally used to test spot / line generators

To test the device with beam angles simulating a VCSEL, a diffusor is added in front of the aperture.

Tester calibration with build-in tool

Calibration 'tray' enabling:

- 1. Sensitivity calibration with wide angle IR-LED
- 2. Distortion calibration with rotating grating
- 3. Accurate reference power measurement

Sensitivity calibration

Distorion calibration

Many more challenges for next-time meeting:

Wafer handling, gripping and clamping

- manually/EFEM,
- Use of vacuum or mechanical solutions

Bow/warp of wafer (up to 1-2 millimeters!):

- Requiring bow/warp mapping
- Tip-tilt and height corrections with

Pitch variations over wafer:

- Alignment on multiple fiducials
- Use actual elements.

Sensitivity drift of pattern imaging camera: ~0.5%/degr. @ 940nm.

- Thermal control
- Regular reference measurements

Calibration:

- Distortion,
- Sensitivity over VOF
- Laser power level (100% level)

Tester to tester variations: tester matching

UPH: Optimize camera resolution, alignment using fiducials, camera sync, multi-threading, Serviceability: Modularity and simple first line service.

Thank you

Accelerating the future

Design choices / customization tasks

Chuck: 120mm CD type, 200mm round glass, 150mm round, 150mm square, Embossed foil, Single and stacked wafers

Laser module design (wavelength, SM/MM, simulating divergent source, spot size, power distribution). Laser focus position

Pattern imaging technique:

Direct imaging (conoscope): Compact,

Front or rear projection: laser speckle reduction required, flexible in FoV, simple optics, easy configurable, thickness of rear-projection foil: broadening.

f-theta optics: multi spot or line angle measurements, spot quality.

Camera type and resolution.

EFEM: cassette, spindles, foup.

Frame

GUI, wafer map, recipe structure, pareto, SPC,

This presentation was presented at EPIC Meeting on Wafer Level Optics 2019

HOSTED BY

DINNER SPONSOR

GOLD SPONSOR

SILVER SPONSORS

BRONZE SPONSORS

