



Paul Hartmann Neuchâtel, 08.11.2019



### MATERIALS - Institute for Surface Technologies and Photonics Organisation, Structure of Research Groups

- 5 Research Groups
  - ~ 90 Employees
- 3 Locations in Austria
  - Weiz
  - Niklasdorf
  - Pinkafeld
- Annual revenue ca. 10 Mio €
  - 40% funded research
  - 40% contract research
  - 20% own funds







Hybrid Electronics and Patterning
Barbara Stadlober

**Light and Optical Technologies** *Christian Sommer* 

Laser and Plasma
Processing
Wolfgang Waldhauser

Sensors and Functional Printing

Jan Hesse

Smart Connected Lighting Franz-Peter Wenzl

## Upscaling Process Flow@JR

### MASTER STAMP/SHIM PRODUCTION





**Maskless Laser Lithography** 





**Step & Repeat UV-NIL** 

#### **REPLICATION**





**R2R-UV-Nanoimprinting** 

**UPSCALING** 

## Application: Free Form Optical Micro-Structures



Facette-type FF-μLense (h=50 μm)







 Example: 14 hexagonally arranged LEDs for thin backlit luminaires



Sequential ray mapping algorithm with lower and upper threshold

## Mastering by UV Grey Scale Laser Lithography





#### Fabricated microstructure



## 2,5 D structures on planar or <a href="curved">curved</a> surfaces

| min. feature size (XY)    | 200 nm               |
|---------------------------|----------------------|
| aspect ratio              | 1:4                  |
| max. structure height (Z) | 60 μm                |
| substrate size            | 6"                   |
| writing speed             | 1 cm <sup>2</sup> /h |

L. Kuna et al., J. Appl. Phys. 104, 074507 (2008); L. Kuna et al., Prog. Photovolt: Res. Appl. 23, 1120 (2015)

### Modified EVG 770 "foil stepper" @ JR (cleanroom)



- Larger stage and vacuum chuck for shim foil handling
- Larger housing
- Extended active stamp area
- Two additional top-side microscopes for live alignment
- New software packages for foil alignment





Substrate area: 270 x 660 mm (longer is possible)

Substrate types: 8" wafer, foils

Positioning accuracy: < 1 μm

#### **Stitching Accuracy:**

No alignment: 5μm With alignment: 1-2μm



... to a medium-scale polymer shim

#### Design

### The key: Materials and Processes



Master



S&R Template



From small-scale masters ...





### Imprint Resins: Basic compositions

#### Imprint materials optimisation:

- Challenge to find a good combination of favourable template properties and very good imprint properties (when later used as a shim for R2R NIL)
- Multicomponent UV-curable acrylate formulations
  - Aliphatic urethane acrylate oligomers as binders with functionality F ≥ 2, very stable
  - Acrylate monomers and Poly-Thiols
     as reactive diluents with F ≥ 1 to tune elasticity
  - Additives to tune surface energy: consider haze !



Patents pending: WO2016/090395A1, WO2016090394A1

M. Leitgeb, D. Nees, B. Stadlober et al. ACS Nano 2016



# Example: optical gratings produced by S&R UV-NIL



## Mastering of 500 nm optical line grid



## Result: S&R Stitching of 500 nm optical line grid

### 4 stitched imprints





# Example: Flexible polymer shims for R2R and R2P processes



## R2R-UV-Nanoimprinting with polymer shims











High Aspect Ratio 5:1 @ CD=200nm





# Example: Optical focusing pattern (2.5D) for biosensing Lab-on-a-chip



Polymer shim made by S&R UV-NIL

R2R replication in index-matched resin on PS foil



### PHABULµOS: European pilot line (H2020 ICT-03-2018-2019)

Who

• Front-running Research & Technology Organizations (RTOs) and Companies along the manufacturing value chain

What

• Setting up a **European pilot line for the manufacturing of freeform micro-optical components** addressing the needs of the optoelectronic and photonic industry with a clear roadmap for future high volume production in Europe at competitive cost

How

- Unique access to **3 UV replication technologies** (wafer scale, R2P, R2R) fully adaptable to the application needs
- Accelerated innovation cycles from free-form optics prototypes to large volume production
- Boost in **new product developments** in strategic application areas
- A manufacturing **one-stop shop** for SMEs
- An European ecosystem in replication of free form micro-optical components







### Special thanks to

- Ursula Palfinger
- Ladislav Kuna
- Dieter Nees
- Claude Leiner
- Barbara Stadlober



www.joanneum.at/materials

## Thank you very much for your attention!

JOANNEUM RESEARCH Forschungsgesellschaft mbH

MATERIALS – Institut für Oberflächentechnologien und Photonik

Franz-Pichler-Straße 30 8160 Weiz

Tel. +43 316 876-3000 materials@joanneum.at

www.joanneum.at/materials



## This presentation was presented at EPIC Meeting on Wafer Level Optics 2019

**HOSTED BY** 



**DINNER SPONSOR** 



**GOLD SPONSOR** 



SILVER SPONSORS





**BRONZE SPONSORS** 















