ROLL-TO-ROLL UV IMPRINTING TECHNOLOGY FOR THIN FOIL POLYMER MICRO-OPTICS

EPIC Meeting on Wafer Level Optics

8th November 2019, Neuchâtel, Switzerland

Samuli Siitonen, CTO Nanocomp (FINLAND)

FLEXIBLE LIGHT GUIDING

NANOCOMP IN BRIEF

- Privately-held high-technology company
- Focused on manufacturing of micro- and nanophotonics products for consumer electronics
- Production is based on roll-to-roll process
- Operating globally, headquarters and factory in Finland and factory also in Chine.
 Other locations in California, Japan, and Hong Kong.

ADDED VALUE BY EXCELLENCE

Design

Tooling

Production

Prototyping – Material and process development – Project management

Design, analysis and simulation of optics

Production of nickel stampers through electroforming

High accuracy mass production (R2R replication and die-cutting with 100% AOI)

ISO9001, ISO14001 and OHSAS18001 certified

NANOCOMP CAPACITY

- Electron beam and gray scale laser lithograpy
- Electroforming line for metal tooling
- UV –curing based replication capacity
 - Sheet level replication setup (450 mm x 450 mm)
 - Roll-to-roll replication lines (Line nr. 1. and 2.)
- Cutting process
 - Laser cutting (1. and 2. unit)
 - Die cutting (1. ,2 and 3. line)

•

UV-ROLL-TO-ROLL PROCESS

- Substrate film materials
 - PC, PMMA, PET and TPU
- In-house developed replication materials for polymer substrate film
- Standard thickness of the substrate materials:
 - 10 μm 500 μm

ULTRA THIN MLA FILMS

MicroLens Array films manufactured by UV roll-to-roll imprinting

APPLICATIONS

- > Displays
- > Diffusers in BLU
- > CCD and CMOS sensors
- > Fiber couplers
- > 3D imaging and VR
- > Security and surveillance

KEY BENEFITS

- > Ultra thin and flexible (down to 10 µm total thickness)
- > Excellent optical performance by precise structures
- > Customized arrangements and parameters

EXAMPLES OF THE UTILIZED STRUCTURES: MOLULATED MICRO PRISM FOR LIGHT OUTCOUPLING

DOE DESIGN & STRUCTURE

EXAMPLE: IR-DOE AT 905 NM WAVELENGHT

COMPONENTS ON ROLL FORMAT

COMPONENTS ON PROCESS

TURNKEY SOLUTIONS FOR DISPLAYS

We can help to solve complex customer challenges in today's fast-paced, global environment

DISPLAY ILLUMINATION

 Display back- and frontlight guides for portable devices (e.g. tablets, notebook PCs, E-readers), wearables, automotive etc.

→ BENEFITS

- Ultra-thin & flexible: 0.2-0.5 mm
- Large sizes: up to 15.6" (diag.)
- Excellent optical performance through proprietary microimprint technology
- Cost effective and accurate UV-R2R mass-manufacturing process

ULTRA THIN FRONT LIGHT GUIDE for e-paper display module

BENEFITS

- ✓ Flexible & ultra thin: 0.2-0.375 mm
- ✓ Excellent color & clarity with invisible micro-structures
- ✓ Cost effective mass production through UV-R2R process
- ✓ Large sizes: up to 15.6" (diag.)

REFLECTIVE DISPLAY STACK

Note: Figure not draw to scale

DIRECTIONAL LIGHT GUIDE FILM for lighting application

High efficiency and directivity

For displays and all other lighting applications

BENEFITS

- > Can be used independently without other optical films
- > See-through component even with lights on
- > High accuracy UV-R2R massmanufacturing process - Cost effective

SAMULI SIITONEN CTO

+358 40 550 2766 samuli.siitonen@nanocomp.fi

This presentation was presented at EPIC Meeting on Wafer Level Optics 2019

HOSTED BY

DINNER SPONSOR

GOLD SPONSOR

SILVER SPONSORS

BRONZE SPONSORS

